Soil-Inhabiting microscopic fungi of the foothill forests of Bu Gia Map National Park (Vietnam)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The information about species composition and conformation characteristics of microfungi’s complexes in the soil and leaf litter of specially protected natural areas of Vietnam. The mycological examinations of the Bu Zia Map National Park were carried out for the first time. List of species that was found by dilution plate method from 60 samples includes 88 species of microscopic fungi belonging to 42 genera and 15 types of sterile forms. 13 species of them were not observed previously for Vietnam. Mucoromycota was represented by only two species that related to the order Mucorales. Basisiomycota was represented by only one species. The most of identified fungi belongs to Ascomycota, domitant part of them is anamorphic. The leading orders are Eurotiales (42 species) and Hypocreales (17 species). Among the anamorphic forms there is a lot of different species Aspergillus and Penicillium. In soil from dipterocarp forest were identified 36 species microscopic fungi from 19 genera and eight sterile forms were isolated. There are three species were included in the group of dominants: Aspergillus tubingensis, Penicillium ochrochloron, Trichoderma harzianum. On a forest with Lagerstroemia sp. (Lythraceae) was found 47 species from 24 genera and 4 sterile forms were isolated. In the palm tropical forest area with Arenga westerhoutii (Arecaceae) 44 species of micromycetes from 27 genera and 5 sterile forms were isolated. The number of typical (dominant and frequent) species is very large, especially for the complex of micromycetes of the soil. Purpureocillium lilacinum and Trichoderma harzianum were also present. Rare tropical fungi have been found, such as Heterocephalum taiense, Chaetomella circinoseta and C. raphigera – soil fungi that are usually isolated from tropical soils and plants. Endocalyx melanoxanthus that has a tropical distribution and is associated with palm trees was found in Vietnam for the first time. The micromycete Thielaviopsis radicicola which is a rather serious pathogen of palm was found in the soil in a forest area with a predominance of Lagerstroemia sp. Complexes of micromycetes of the studied forest areas are divided into groups according to the types of habitats studied and by the types of different substrates. The complexes of micromycetes that were found in the soil and on the litter of the Lagerstroemia forest are very different. The degree of study of the species composition for all habitats is not very high: from 56 to 78%. Further studies of this group are promising and may lead to the identification of new species.

About the authors

I. I. Antonova

Lomonosov Moscow State University

Author for correspondence.
Email: antirina22@yandex.ru
Russian Federation, Moscow

А. V. Aleksandrova

Lomonosov Moscow State University; Joint Vietnam-Russian Tropical Research and Technological Centre

Email: alina-alex2011@yandex.ru
Russian Federation, Moscow; Hanoy, Vietnam

Е. А. Antonov

Lomonosov Moscow State University; Joint Vietnam-Russian Tropical Research and Technological Centre; Kurchatov Institute National Research Center

Email: antonovea@my.msu.ru
Russian Federation, Moscow; Hanoy, Vietnam; Moscow

I. А. Volynkina

Lomonosov Moscow State University; Skolkovo Institute of Science and Technology

Email: info@mail.bio.msu.ru
Russian Federation, Moscow; Moscow

D. А. Lukyanov

Lomonosov Moscow State University; Skolkovo Institute of Science and Technology

Email: info@mail.bio.msu.ru
Russian Federation, Moscow; Moscow

References

  1. Abbas E., Abdulla A. First report of neck bending disease on date palm in Qatar. Plant Pathology. 2003. V. 526. P. 790–790. https://doi.org/ 10.1111/j.1365-3059.2003.00899.x
  2. Aleksandrova A.V., Aldobaeva I.I. Soil-inhabited microscopic fungi of the dry deciduous dipterocarpous forest National park Yok Don, Vietnam. Mikologiya i fitopatologiya. 2018. V. 521. P. 22–29 (in Russ.).
  3. Aleksandrova A.V., Sidorova I.I., Tiunov А.V. Microfungi of soils and litter of the National park Cat Tien (South Vietnam). Mikologiya i fitopatologiya. 2011. V. 45 (1). P. 12–25 (in Russ.).
  4. Ammar M.I. First report of Chalaropsis punctulata on date palm in Egypt, comparison with other Ceratocystis anamorphs and evaluation of its biological control. Phytoparasitica. 2011. V. 395. P. 447–453. https://doi.org/10.1007/s12600-011-0179-z
  5. Anderson M.J. PCO: a Fortran computer program for principal coordinate analysis. Auckland, 2003.
  6. Ashbee H.R., Evans E.G.V. Immunology of diseases associated with Malassezia species. Clinical microbiology reviews. 2002. V. 151. P. 21–57. https://doi.org/10.1128/CMR.15.1.21-57.2002
  7. Baba T., Ara T., Hasegawa M. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology. 2006. V. 2. P. 2006.0008. https://doi.org/10.1038/msb4100050
  8. Bills G.F., Dombrowski A., Pelvez F., et al. Recent and future discoveries of pharmacologically active metabolites from tropical fungi. In: Tropical Mycology 2. Micromycetes. Eds. R. Watling et al. CABI Publishing, N.Y., 2004, pp. 165–194.
  9. Brandt S.C., Ellinger B., Van Nguyen T. et al. A unique fungal strain collection from Vietnam characterized for high performance degraders of bioecological important biopolymers and lipids. PLOS One. 2018. V. 13 (8). P. e0202695. https://doi.org/10.1371/journal.pone.0202695
  10. Capdet M., Romero A.I. Fungi from palms in Argentina. Mycotaxon. 2010. V. 1121. P. 339–355. https://doi.org/10.5248/112.339
  11. Colwell R.K. EstimateS, Version 8.0: statistical estimation of species richness and shared species from samples. 2006. http://viceroy.eeb.uconn.edu/EstimateS
  12. Devi L.S., Khaund P., Nongkhlaw F.M.W. et al. Diversity of culturable soil microfungi along altitudinal gradients of Eastern Himalayas. Mycobiology. 2012. V. 40 (3). P. 151–158. https://doi.org/10.5941/MYCO.2012.40.3.151
  13. Domsch K.H., Gams W., Anderson T. Compendium of soil fungi. IHW-Verlag, Ehing, 2007.
  14. Dzhongman R.G.G., ter Braak S.D.F., van Tongeren O.F.R. Data analysis in community ecology and landscape. Izdatelstvo RАSKHN, Moskva, 1999 (in Russ.).
  15. Ellis M.B. Dematiaceous Hyphomycetes. CMI, Kew, 1993.
  16. Fróhlich J., Hyde K.D., Petrini O. Endophytic fungi associated with palms. Mycol. Res. 2000. V. 10410. P. 1202–1212. https://doi.org/10.1017/S095375620000263X
  17. Gajbhiye M., Sathe S., Shinde V. et al. Morphological and molecular characterization of pomegranate fruit rot pathogen, Chaetomella raphigera, and its Virulence Factors. Indian Journal of Microbiology. 2016. V. 561. P. 99–102. https://doi.org/10.1007/s12088-015-0554-4
  18. Gams W. Cephalosporium-like Hyphomycetes: some tropical species. Transactions of the British Mycological Society. 1975. V. 64. P. 389–404.
  19. Glass N.L., Donaldson G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environm. Microbiol. 1995. V. 61 (4). P. 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  20. Guu J.R., Ju Y.M., Hsieh H.J. Bionectriaceous fungi collected from forests in Taiwan. Botanical Studies. 2010. V. 511. P. 61–74.
  21. Hawksworth D. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 2004. V. 50. P. 9–18.
  22. Heberle H., Meirelles G.V., da Silva F.R. et al. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015. V. 161. Article 1. https://doi.org/10.1186/s12859-015-0611-3
  23. Ho H.M., Chuang S.C., Chen S.J. Notes on Zygomycetes of Taiwan IV: three Absidia species Mucoraceae. Fungal Science. 2004. V. 194. P. 125–131.
  24. Hyde K.D. Observations on the vertical distribution of marine fungi on Rhizophora spp. at Kampong Danau mangrove, Brunei. Asian Marine Biology 5. Hong Kong University Press. 1988. P. 77–82.
  25. Hyde K.D., Alias S.A. Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biodiversity et Conservation. 2000. V. 9 (3). P. 393–402. https://doi.org/10.1023/A:1008911121774
  26. Hyde K.D., Bussaban B., Paulus B. et al. Diversity of saprobic microfungi. Biodiversity and Conservation. 2007. V. 161. P. 7–35. https://doi.org/10.1007/s13225-018-0415-7
  27. Hyde K.D., Zhou D., Dalisay T. Bambusicolous fungi: a review. Fungal Diversity. 2002. V. 9. P. 1–14.
  28. Index Fungorum CABI Bioscience Database. https://www.indexfungorum.org/. Accessed 23.07.2023.
  29. Kalashnikova K.A., Alexandrova A.V. Soil inhabiting microscopic fungi of the national park “Bi Dup-Nui Ba” South Vietnam. Mikologiya i fitopatologiya. 2014. V. 486. P. 355–364 (in Russ.).
  30. Kalashnikova K.A., Alexandrova A.V. Soil-inhabiting microscopic fungi of the piedmont tropical forest Loc Bac Forest Enterprise, South Vietnam. Mikologiya i fitopatologiya. 2015. V. 492. P. 91–101. (in Russ.).
  31. Kalashnikova K.A., Konovalova O.P., Alexandrova A.V. Soil-inhabiting microfungi of the monsoon dipterocarp forest (the natural reserve Dong Nai, South Vietnam). Mikologiya i fitopatologiya. 2016. V. 50 (2). P. 97–107 (in Russ.).
  32. Kamiyama T., Satoh T., Umino T. et al. Monamidocin, a novel fibrinogen receptor antagonist. II. Biological activity and atructure-activity relationships. J. Antibiotics. 1995. V. 48 (11). P. 1226–1233. https://doi.org/10.7164/antibiotics.48.1226
  33. Klich M. Biogeography of Aspergillus species in soil and litter. Mycologia. 2002. V. 941. P. 21–27.
  34. Konta S., Hongsanan S., Phillips A.J. et al. Botryosphaeriaceae from palms in Thailand II-two new species of Neodeightonia, N. rattanica and N. rattanicola from Calamus rattan palm. Mycosphere. 2016. V. 77. P. 950–961. https://doi.org/10.5943/mycosphere/14/1/2
  35. Kuznetsov A.N. Structure and dynamics of the monsoon tropical forest in Vietnam. Moscow, MSU, 2016 (in Russ.).
  36. Leontyev D.V. Floristic analysis in mycology: a textbook for students. Kharkov, 2008 (in Russ.).
  37. Lihovidov V.E., Aleksandrova A.V., Bystrova E.V. et al. Antibacterial activity of soil fungi of South Vietnam against the causative agent of anthrax. Sovremennaya mikologiya v Rossii. 2017a. V. 7. P. 412–414 (in Russ.).
  38. Lihovidov V.E., Aleksandrova A.V., Bystrova E.V. et al. Antimicrobial activity of micromycete strains against hospital infections. Sovremennaya mikologiya v Rossii. 2017b. V. 7. P. 242–245 (in Russ.).
  39. Magurran A.E. Ecological diversity and its measurement. Mir, Moscow, 1992 (in Russ.).
  40. Methods of soil microbiology and biochemistry. Izdatelstvo MGU, Moscow, 1991 (in Russ.).
  41. MycoBank Fungal databases. Nomenclature and species banks. 2023. https://www.mycobank.org/. Accessed 23.07.2023.
  42. Mirchink T.G. Soil mycology. Publishing House of Moscow State University, Moscow, 1988 (in Russ.).
  43. Mirchink T.G., Ozerskaya S.M., Marfenina O.E. Methods for identifying complexes of microscopic fungi typical for specific conditions from their structural characterization. Nauchnye doklady vysshey shkoly. Biologicheskie nauki. 1982. V. 11. P. 61–66 (in Russ.).
  44. Orelle C., Carlson S., Kaushal B. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemotherapy. 2013. V. 57 (12). P. 5994–6004. https://doi.org/10.1128/aac.01673-13
  45. Osterman I.A., Komarova E.S., Shiryaev D.I. et al. Sorting out antibiotics’ mechanisms of action: a double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemotherapy. 2016. V. 60 (12). P. 7481–7489. https://doi.org/10.1128/AAC.02117-16
  46. Persiani A.M., Maggi O. A new species of Heterocephalum fron Ivory Coast soil. Transactions of the British Mycological Society. 1986. V. 87. P. 631–635.
  47. Pfenning L.H., Abreu de L.M. Diversity of microfungi in tropical soils. In: F.M.S. Moreira, J.O. Siqueira, L. Brussaard (eds). Soil biodiversity in Amazonian and other Brazilian ecosystems. CABI Publishing, Oxfordshire, 2006, pp. 184–205.
  48. Pitt J.I. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, L., 1979.
  49. Polizzi G., Castello I., Aiello D. et al. First report of stem bleeding and trunk rot of Kentia palm caused by Thielaviopsis paradoxa in Italy. Plant Disease. 2007. V. 918. P. 1057–1057. https://doi.org/10.1094/PDIS-91-8-1057A
  50. Ramirez C. Manual and atlas of the Penicillia. Amsterdam. Elsiveier Biomedical Press, N.Y., Oxford, 1982.
  51. Rossman A.Y., Cathie A.M., Farr D.F. et al. The coelomycetous genera Chaetomella and Pilidium represent a newly discovered lineage of inoperculate discomycetes. Mycol. Progress. 2004. V. 34. P. 275–290. https://doi.org/10.1007/s11557-006-0098-4
  52. Schoch C.L., Seifert K.A., Huhndorf S. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 2012. V. 109 (16). P. 6241–6246. https://doi.org/10.1073/pnas.1117018109
  53. Shirouzu T., Hirose D., Tokumasu S. et al. Host affinity and phylogenetic position of a new anamorphic fungus Beltraniella botryospora from living and fallen leaves of evergreen oaks. Fungal Diversity. 2010. V. 43. P. 85–92.
  54. Shukla A., Singh A., Tiwari D. et al. Bambusicolous fungi: A reviewed documentation. 2016. International Journal of Pure et Applied Bioscience (IJPAB). V. 4 (2). P. 304–310. http://dx.doi.org/10.18782/2320-7051.2268
  55. Somrithipol S., Jones E.G. Calcarisporium phaeopodium sp. nov., a new hyphomycete from Thailand. Sydowia. 2006. V. 581. P. 133–141.
  56. Sterling E.J., Hurley M.M., Minh L.D. Vietnam: a natural history. Yale University Press, New Haven, L., 2006.
  57. Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 1. 2021. V. 38(7). P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  58. Taylor J.E., Hyde K.D. Microfungi of tropical and temperate palms. Fungal Diversity Press, 2003.
  59. Tsang C.C., Tang J.Y. M., Lau S.K.P. et al. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future. Computational and Structural Biotechnology Journal. 2018. V. 16. P. 197–210. https://doi.org/10.1016/j.csbj.2018.05.003
  60. Tsui K.M., Fryar S.C., Hodgkiss I.J. et al. The effect of human disturbance on fungal diversity in the tropics. Fungal Diversity. 1998. V. 1. P. 19–26.
  61. Van Sung C. The system of protected areas in Vietnam. Environment and bioresources of Vietnam. Hanoi. The Gioi Publishers. 1995. P. 57–128.
  62. Visalakchi S., Muthumary J. Antimicrobial activity of the new endophytic Monodictys castaneae SVJM139 pigment and its optimization. African J. Microbiol. Res. 2009. V. 39. P. 550–556.
  63. Vitoria N.S., Cavalcanti M.A.Q., Luz E.D.N. et al. Endocalyx melanoxanthus var. melanoxanthus Ascomycota: new to Brazil and three new hosts. Mycotaxon. 2011. V. 1171. P. 109–113. https://doi.org/10.5248/117.109
  64. Vu D., Groenewald M., de Vries M. et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019. V. 92 (1). P. 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  65. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. 1990. P. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  66. Whitton S.R., Mckenzie E.H., Hyde K.D. The current understanding of fungi associated with Pandanaceae. Fungi associated with Pandanaceae. 2012. Fungal Diversity Research Series. V. 21. P. 1–10. https://doi.org/10.1007/978-94-007-4447-9_1
  67. Yaguchi T., Someya A., Udagawa S. New and rare microfungi from the island of Hachijo-Jima. Mycoscience. 1996. V. 37. P. 157–162.
  68. Yilmaz N., Visagie C.M., Houbraken J. et al. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014. V. 78. P. 175–341. https://doi.org/10.1016/j.simyco.2014.08.001
  69. Zaid A., De Wet P., Djerbi M. et al. Diseases and pests of date palm. Chapter XII: Date palm cultivation. Food and Agriculture Organization Plant Production and Protection. 2002. V. 156. P. 227–281.
  70. Zak J.C., Willig M.R. Analysis and interpretation of fungal biodiversity patterns. In: Biodiversity of fungi: Inventory and monitoring methods. Elsevier Academic Press, Amsterdam, 2004. P. 59–76.
  71. Александрова A.В., Сидорова И.И., Тиунов А.В. (Aleksandrova et al.) Микроскопические грибы почв и листового опада национального парка Кат Тиен (южный Вьетнам) // Микология и фитопатология. 2011. Т. 45. № 1. С. 12–25.
  72. Александрова А.В., Алдобаева И.И. (Aleksandrova, Aldobaeva) Почвообитающие микроскопические грибы светлого диптерокарпового леса национальный парк Йок Дон, Вьетнам // Микология и фитопатология. 2018. Т. 52. № 1. С. 22–29.
  73. Джонгман Р.Г.Г., ТерБраак С.Д.Ф. и др. (Dzhongman et al.) Анализ данных в экологии сообществ и ландшафтов. М.: Издательство РАСХН, 1999. 306 с.
  74. Калашникова К.А., Александрова А.В. (Kalashnikova, Aleksandrova) Почвообитающие микроскопические грибы Национального парка “Би Дуп-Нуй Ба” Южный Вьетнам //Микология и фитопатология. 2014. Т. 48. вып.6. С. 355–364.
  75. Калашникова К.А., Александрова А.В. (Kalashnikova, Aleksandrova) Почвообитающие микроскопические грибы предгорного тропического леса (лесхоз Лок Бак, Южный Вьетнам) // Микология и фитопатология. 2015. Т. 49. № 2. С. 91–101.
  76. Калашникова К.А., Коновалова О.П., Александрова А.В. (Kalashnikova et al.) Почвообитающие микроскопические грибы муссонного диптерокарпового леса Заповедник Донг Най, Южный Вьетнам // Микология и фитопатология. 2016. Т. 50. № 2. С. 97–107.
  77. Кузнецов А.Н. (Kuznetsov) Структура и динамика муссонных тропических лесов Вьетнама. Дисс. … докт. биол. наук. Москва, 2016. 554 с.
  78. Леонтьев Д.В. (Leontyev) Флористический анализ в микологии: учебник для студентов высших учебных заведений. Харьков, 2008. 110 с.
  79. Лиховидов В.Е., Александрова А.В., Быстрова Е.В. и др. (Likhovidov et al.) Антибактериальная активность почвенных грибов Южного Вьетнама в отношении возбудителя сибирской язвы // Современная микология в России. 2017а. Т. 7. С. 412–414.
  80. Лиховидов В.Е., Александрова А.В., Быстрова Е.В. и др. (Likhovidov et al.) Антимикробная активность штаммов микромицетов в отношении госпитальных инфекций // Современная микология в России. 2017б. Т. 7. С. 242–245.
  81. Мегарран Э. (Megarran) Экологическое разнообразие и его измерение. М.: Мир, 1992. 181 c.
  82. Методы почвенной микробиологии и биохимии (Methods) / Под ред. Д.Г. Звягинцева. М.: Издательство МГУ, 1991. 304 с.
  83. Мирчинк Т.Г. (Mirchink) Почвенная микология. М.: Изд-во МГУ, 1988. 220 с.
  84. Мирчинк Т.Г., Озерская С.М., Марфенина О.Е. (Mirchink et al.) Выявление комплексов микроскопических грибов по их структуре // Научные доклады высшей школы. Биологические науки. 1982. № 11. С. 61–66.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies