Comparative study of the efficiency of inducers of cotton resistance to verticillium wilt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of pre-sowing seed treatment with immunostimulant Bisol-2, red light and low frequency electromagnetic field on the content of fungitoxic substances of phenolic nature – phytoalexins (isohemigossypol and gossypol-equivalent) in infected etiolated cotton seedlings of S-4727 cultivar infected with Verticillium wilt pathogen was studied. It was found that photostimulation of seeds by red light induces phytoalexin formation in cotton tissues infected by the pathogen 1.5–2 times more effectively in comparison with Bisol-2 preparation or inducer of electromagnetic nature. The correlation between the content of phytoalexins in the tissues of seedlings, parameters of induction curves of chlorophyll fluorescence and the number of plants with signs of wilt lesions grown from treated and untreated seeds with inducers was revealed. This indicates the possibility of using red light and weak low-frequency electromagnetic fields as factors contributing to the intensification of phytoalexin formation in response to Verticillium wilt infection of cotton.

Full Text

Restricted Access

About the authors

I. G. Akhmedzhanov

Institute of Biophysics and Biochemistry at the National University of Uzbekistan

Author for correspondence.
Email: iskakhm@mail.ru
Uzbekistan, 100047, Tashkent

M. M. Khotamov

Institute of Genetics and Plant Experimental Biology of the Academy of Sciences of the Republic of Uzbekistan

Email: mansurhatamov@mail.ru
Uzbekistan, 111208, Yukori-Yuz

P. G. Merzlyak

Institute of Biophysics and Biochemistry at the National University of Uzbekistan

Email: galores@list.ru
Uzbekistan, Ташкент

References

  1. Akhiyarov B., Rakhimov R., Kutluev A. The use of Bisol 2 on cucumbers. Ovoshchevodstvo i teplichnoe khozyaystvo. 2017. N2 (150). P. 40–45 (in Russ.).
  2. Akhmedzhanov I.G., Gussakovsky E.E., Tashmukhamedov B.A. et al. A method for increasing the resistance of cotton to damage by the causative agent of Verticillium wilt. Authors’ certificate N1782387 of the State Committee for inventions of the USSR, 1992 (in Russ.).
  3. Akhmedzhanov I.G., Gussakovsky E.E., Avazkhodzhaev M.H. et al. Regulation of phytoalexin formation in cotton tissues when seeds are irradiated with red light. Uzbekskiy biologicheskiy zhurnal. 1993. N 1. P. 3–5 (in Russ.).
  4. Akhmedzhanov I.G., Agishev V.S., Dzholdasova K.B. et al. The use of a portable fluorimeter to study the effect of water deficit on the characteristics of delayed fluorescence of cotton leaves. Doklady Akademii nauk Uzbekistana. 2013. N3. P. 58–60 (in Russ.).
  5. Akhmedzhanov I.G., Tonkikh A.K., Khotamov M.M. et al. Method of pre-sowing treatment of cotton seeds. Patent for invention N IAP 05970 of the Agency for intellectual property of the Republic of Uzbekistan (priority of 24.05.2017, N IAP 2017 0197).
  6. Akhmedzhanov I.G., Khotamov M.M. Investigation of cotton wilt resistance by fluorescence spectroscopy. Mikologiya i fitopatologiya. 2022. V. 56 (2). Р. 105–113.
  7. Akhmedzhanov I.G., Khotamov M.M., Ganiev F.K. et al. Phytochrome-dependent regulation of melon resistance to Fusarium wilt. Mikologiya i fitopatologiya. 2023. V. 57 (2). P. 113–122.
  8. Aksenov S.I., Grunina T. Yu., Goryachev S.N. On the mechanisms of stimulation and inhibition during germination of wheat seeds in an ultra-low frequency electromagnetic field. Biophysics. 2007. V. 52 (2). Р. 332–338.
  9. Aleynikov A.F., Mineev V.V. Effect of the fungus of Ramularia tulasnei Sacc. on chlorophyll fluorescence in garden strawberry. Sibirskiy vestnik selskokhozyaystvennoy nauki. 2019. V. 49 (2). P. 94–102 (in Russ.).
  10. Avazkhodzhaev M. Kh., Zeltzer S.S. Physiological factors of cotton wilt resistance. Fan, Tashkent, 1980 (in Russ.).
  11. Avazkhodzhaev M. Kh., Zeltzer S.S., Nuritdinova H. et al. Phytoalexins as a factor in wilt resistance of cotton. In: Handbook of phytoalexin metabolism and action. Marcel Dekker Inc., N.Y. etc., 1995, pp. 129–160.
  12. Babar M.A., Saleem M., Hina A. et al. Chlorophyll as biomarker for early disease diagnosis. Laser Physics. 2018. V. 28 (6). P. 58–63.
  13. Belan S.R. New pesticides: Handbook. Grail Publishing House, Moscow, 2001 (in Russ.).
  14. Belasque J., Gasparoto M.C.G., Marcassa L.G. Detection of mecanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl. Opt. 2008. V. 47 (11). P. 1922–1926.
  15. Belov M.L., Bullo O.A., Fedotov Yu.V. et al. Laser method for vegetation monitoring. Vestnik MGTU. Ser. Priborostroeniye. 2015. N 2. P. 71–82 (in Russ.).
  16. Ben-Izhak M.E., Parola A.H., Kost D. Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Bioch. Biophys. Res. Commun. 2003. V. 302 (2). P. 427–434.
  17. Bilalis D.J., Katsenios N., Efthimiadou A. et al. Magnetic field pre-sowing treatment as an organic friendly techniqueto promote plant growth and chemical elements accumulation in early stages of cotton. Australian J. Crop Sci. 2013. V. 7 (1). P. 46–50.
  18. Bitarishvili S.V., Bondarenko V.S., Geraskin S.A. Expression of gibberellin biosynthesis and catabolosm genes in the embryos of ɤ-irradiated Barley seeds. Radiation biology. Radioecology. 2019. N 3. Р. 286–292 (in Russ.).
  19. Dechaine J.M., Gardner G., Weinig C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ. 2009. V. 32 (10). P. 1297–1309.
  20. Dospekhov B.A. Field experiment technique (with the basics of statistical processing of research results). Agropromizdat, Moscow, 1985 (in Russ.).
  21. Dyakov Yu.T., Ozeretskovskaya O.L., Javakhia V.G. et al. General and molecular phytopathology. Moscow, 2001 (in Russ.).
  22. Haard N.F. Stress metabolites. Post. Harvest Phisiol. and Crop Preserv. Proc. NATO Adv. Study. Inst. Sounion. 1983. P. 299–314.
  23. Khotamov M.M., Redzhapova M.M. Resistance of the variety diversity Gossypium hirsutum L. species to Verticillium wilt. Int. J. Innovative Research in Multidisciplinary Field. 2019. V. 5 (5). P. 78–80.
  24. Khotamov M.M., Agishev V.S., Akhmedzhanov I.G. Influence of Verticillium wilt infection on the functional activity of the cotton photosynthetic apparatus. Mikologiya i fitopatologiya. 2020. V. 54 (5). P. 340–346.
  25. Khotamov M.M., Akhmedzhanov I.G. Study of Verticillium wilt pathogenesis in different cotton genotypes. Mikologiya i fitopatologiya. 2021. V.55 (2). P. 148–154.
  26. Kodama O., Suzuki T., Miyokawa J. et al. Ultraviolet induced accumulation of phytoalexines in rice leaves. Agr. Biol. Chem. 1988. V. 52. P. 2469–2473.
  27. Kodirov A.K. Study and development of technology for the use of the immuno- and growth stimulator Rostbisol on cotton in the conditions of the Bukhara region. Cand. Biol. Thesis. Tashkent, 2009 (in Russ.).
  28. Konan Y.K.F., Kouassi K.M., Kouakou K.L. et al. Effect of methyl jasmonate on phytoalexins biosynthesis and induced disease Resistance to Fusarium oxysporum f. sp. vasinfectum in cotton (Gossypium hirsutum L.). Int. J. Agron. 2014. https://doi.org/10.1155/2014/806439
  29. Korneev D. Yu. Information possibilities of the method of inducing fluorescence of chlorophyll. Alterpress, Kiev, 2002 (in Russ.).
  30. Kshirsagar A., Reid A.J., McColl S.M. et al. The effect of fungal metabolites on leaves as detected by chlorophyll fluorescence. New Phytol. 2001. V. 151 (2). P. 451–457.
  31. Kuc J. Phytoalexins, stress metabolism and disease resistance in plants. Ann. Rev. Phytopathol. 1995. N 33. P. 275–297.
  32. Kulaeva O.N. How light regulates life of plants. Sorosovskiy obrazovatelniy zhurnal. 2001. V. 7 (4). P. 6–12 (in Russ.).
  33. Kuznetsov E.D., Sechnyak L.K., Kindruk N.A. et al. The role of phytochrome in plants. Agropromizdat, Moscow, 1986 (in Russ.).
  34. Legris M., Caka Yu., Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications. 2019. V. 10. https://doi.org/10.1038/s41467–019–13045–0
  35. Lichtenthaler H.K. The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica. 1992. V. 27 (1–2). P. 45–55.
  36. Malinovsky V.I. Plant physiology. Textbook, university manual. Vladivostok, 2004 (in Russ.).
  37. Mandal K., Saravanan R., Maiti S. et al. Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. J. Plant Diseas. Protect. 2009. V. 116 (4). P. 164–168.
  38. Matorin D.N., Timofeev N.P., Glinushkin A.P. et al. Application of the fluorescence method for investigating the influence of root rot pathogen Bipolaris sorokniana on photosynthetic light reactions in wheat plants. Vestnik Moskovskogo universiteta. Ser. 16. Biologiya. 2018. V. 73 (4). P. 247–253 (in Russ.).
  39. Mavlanova S.A. Physiological and biochemical peculiarities of the induced resistance of cotton to sucking pests-insects and Verticillium wilt exitant. Cand. Biol. Thesis. Tashkent, 2012 (in Russ.).
  40. Nadzhimova H.K. The influence of red light on auxin-dependent processes in plants. Cand. Biol. Thesis. Tashkent, 2007 (in Russ.).
  41. Nelyubina Z.S., Kasatkina N.I. Influence of ultraviolet irradiation of perennial grasses seeds on their sowing quality. Agrarnaya nauka. 2021. N9. P. 97–100 (in Russ.). https://doi.org/10.32634/0869-8155-2021-352-9-97-100
  42. Nenakhova E.V., Nikolaeva L.A. Ultraviolet radiation. The effect of ultraviolet radiation on the human body. IGMU, Irkutsk, 2020 (in Russ.).
  43. Pascual I., Azcona I., Morales F. et al. Photosynthetic response of pepper plants to wilt induced by Verticillium dahliae and soil water deficit. J. Plant Physiol. 2010. V. 167 (9). P. 701–708.
  44. Pershakova T.V., Kupin G.A., Mikhaylyuta L.V. et al. Investigation of the influence of the electromagnetic field on the change of microbial contamination of plant raw materials during storage. Uspekhi sovremennogo estestvoznaniya. 2016. N 5. Р. 74–78 (in Russ.).
  45. Posudin Yu.I., Godlevska O.O., Zaloilo I.A. et al. Application of portable fluorometer for estimation of plant tolerance to abiotic factors. Int. Agrophysics. 2010. V. 24 (4). P. 363–368.
  46. Quail P.H. Phytochrome photosensory signaling networks. Nature. 2002. V. 3. P. 85–93.
  47. Romanov V.A., Galeluka I.B., Sakharan E.V. Portable fluorimeter and features of its application. Sensornaya elektronika i mikroskopicheskiye tekhnologii. 2010. V. 1 (7). P. 146–152 (in Russ.).
  48. Savina O.V., Ilyichev L.F. The use of red light to activate the germination of tomato seeds with expired shelf life. Vestnik Ryazanskogo agrotekhnicheskogo universiteta. 2021. V. 13 (4). Р. 104–111 (in Russ.).
  49. Savina O.V., Rudelev S.A., Rodionova A.E. Stimulation of germination of grain seeds by incoherent red light: theory and practice. Vestnik FGBOU VPO RGATU. 2015. N 1 (25). Р. 60–65 (in Russ.).
  50. Sayapina D.G., Sivokon V.E., Limarenko N.V. Investigation of the effect of ultraviolet radiation on the condition of human skin. Molodoy issledovatel Dona. 2022. N 3 (36). P. 144–148 (in Russ.).
  51. Shakirova F.M. Non-specific resistance of plants to stress factors and its regulation. Gilem, Ufa, 2001 (in Russ.).
  52. Stossel P., Magnolato D. Phytoalexins in Phaseolus vulgaris and glycine max induced by chemical treatment, microbial contomination and fungal infection. Experimentia. 1983. V. 39 (2). P. 153–154.
  53. Tonkikh A.K. Mechanisms of action of weak low-frequency electromagnetic fields on living organisms. Uzbekskiy biologicheskiy zhurnal. 2010. Special Issue. P. 93–99 (in Russ.).
  54. Vayda K., Donohue K., Auge G.A. Within- and trans-generational plasticity: seed germinationresponses to light quantity and quality. AoB Plants. 2018. V. 10 (3). P. ply023. https://doi.org/10.1093/aobpla/ply023
  55. Veselovsky V.A., Veselova T.V. Luminescence of plants. Theoretical and practical aspects. Nauka, Moscow, 1990 (in Russ.).
  56. Voytsekhovskaya O.V. Phytochromes and other (photo) receptors of information in plants. Fiziologiya rasteniy. 2019. V. 66 (3). P. 163–177 (in Russ.).
  57. Volotovsky I.D. Phytochrome is a regulatory photoreceptor of plants. Nauka, Moscow, 1992 (in Russ.).
  58. Wu G., Zhao I., Sen R. et al. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiol. 2019. V. 181. P. 789–803. https://doi.org/10.1104/pp.19.00239
  59. Zhurbitsky Z.I. Theory and practice of the vegetative method. Nauka, Moscow, 1968 (in Russ.).
  60. Авазходжаев М.Х., Зельцер С.Ш. (Avazkhodzhaev, Zeltser) Физиологические факторы вилтоустойчивости хлопчатника. Ташкент: Фан, 1980. 22 с.
  61. Аксенов С.И., Грунина Т.Ю., Горячев С.Н. (Aksenov et al.) О механизмах стимуляции и торможения при прорастании семян пшеницы в электромагнитном поле сверхнизкой частоты // Биофизика. 2007. Т. 52. № 2. С. 332–338.
  62. Алейников A.Ф., Минеев В.В. (Aleynikov, Mineev) Влияние гриба Ramularia tulasnei Sacc. на флуоресценцию хлорофилла садовой клубники // Сибирский вестник сельскохозяйственной науки. 2019. T. 49. № 2. Р. 94–102.
  63. Ахияров Б., Рахимов Р., Кутлуев А. (Akhiyarov et al.) Применение препарата Бисол 2 на огурцах // Овощеводство и тепличное хозяйство. 2017. № 2 (150). С. 40–45.
  64. Ахмеджанов И.Г., Гуссаковский Е.Е., Авазходжаев М.Х. и др. (Akhmedzhanov et al.) Способ повышения устойчивости хлопчатника к поражению возбудителем вертициллезного вилта. Авт. свид. СССР. № 1782387, 1992.
  65. Ахмеджанов И.Г., Гуссаковский Е.Е., Авазходжаев М.Х. и др. (Akhmedzhanov et al.) Регуляция фитоалексинообразования в тканях хлопчатника при облучении семян красным светом // Узб. биол. журн. 1993. № 1. С. 3–5.
  66. Ахмеджанов И.Г., Агишев В.С., Джолдасова К.Б. и др. (Akhmedzhanov et al.) Применение портативного флуориметра для исследования влияния водного дефицита на характеристики замедленной флуоресценции листьев хлопчатника // Докл. АН РУз. 2013 № 3. С. 58–60.
  67. Ахмеджанов И.Г., Тонких А.К., Хотамов М.М. и др. (Akhmedzhanov et al.) Способ предпосевной обработки семян хлопчатника. Патент на изобретение № IAP 05970 Агентство по интеллектуальной собственности РУз (приоритет от 24.05.2017 г., рег. № IAP 2017 0197).
  68. Белан С.Р. (Belan) Новые пестициды: Справочник. Москва: ИД Грааль, 2001. 196 с.
  69. Белов М.Л., Булло О.А., Федотов Ю.В. и др. (Belov et al.) Лазерный метод контроля состояния растений // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2015. № 2. С. 71–82.
  70. Битарашвили С.В., Бондаренко В.С, Гераськин С.А. (Bitarashvili et al.) Экспрессия генов биосинтеза и катаболизма гиббереллинов в зародышах семян ячменя, подвергшихся воздействию ɤ-излучения // Радиационная биология. Радиоэкология. 2019. № 3. С. 286–292.
  71. Веселовский В.А., Веселова Т.В. (Veselovskiy, Veselova) Люминесценция растений. Теоретические и практические аспекты. М.: Наука, 1990. 176 с.
  72. Войцеховская О.В. (Voytsekhovskaya) Фитохромы и другие (фото)рецепторы информации у растений // Физиология растений. 2019. T. 66. № 3. C. 163–177.
  73. Волотовский И.Д. (Volotovskiy) Фитохром — регуляторный фоторецептор растений. Москва: Наука, 1992. 168 с.
  74. Дагужиева З.Ш. (Daguzhieva) Лекции по фитопатологии. Учебное пособие для аспирантов сельскохозяйственного направления. Майкоп: изд-во МГТУ, 2015. 76 с.
  75. Доспехов Б.А. (Dospekhov) Методика полевого опыта (с основами статистической обработки результатов исследований). М.: Агропромиздат, 1985. 351 с.
  76. Дьяков Ю.Т., Озерецковская О.Л., Джавахия В.Г. и др. (Dyakov et al.) Общая и молекулярная фитопатология. М.: Общество фитопатологов, 2001. 302 с.
  77. Журбицкий З.И. (Zhurbitskiy) Теория и практика вегетационного метода. М.: Наука, 1968. 268 с.
  78. Кодиров А.К. (Kodirov) Изучение и разработка технологии применения иммуно- и ростстимулятора Ростбисол на хлопчатнике в условиях Бухарской области. Дисс. … канд. биол. наук. Ташкент, 2009. 133 с.
  79. Корнеев Д.Ю. (Korneev) Информационные возможности метода индукции флуоресценции хлорофилла. Киев: Альтерпрес, 2002. 188 с.
  80. Кузнецов Е.Д., Сечняк Л.К., Киндрук Н.А. и др. (Kuznetsov et al.) Роль фитохрома в растениях. Москва: Агропромиздат, 1986. 285 с.
  81. Кулаева О.Н. (Kulaeva) Как свет регулирует жизнь растений // Соросовский образовательный журнал. 2001. Т. 7. № 4. С. 6–12.
  82. Мавланова С.А. (Mavlanova) Физиолого-биохимические особенности индуцированной устойчивости хлопчатника к сосущим насекомым-вредителям и возбудителю вертициллезного вилта. Дисс. … канд. биол. наук. Ташкент, 2012. 132 с.
  83. Малиновский В.И. (Malinovskiy) Физиология растений. Учеб. пособие. Владивосток: Изд-во ДВГУ, 2004. 94 с.
  84. Маторин Д.Н., Тимофеев Н.П., Глинушкин А.П. и др. (Matorin et al.) Исследование влияния грибковой инфекции Bipolaris sorokoniana на световые реакции фотосинтеза пшеницы с использованием флуоресцентного метода // Вестник Московского университета. Сер. 16. Биология. 2018. Т. 73 (4). С. 247–253.
  85. Наджимова Х.К. (Nadzhimova) Влияние красного света на ауксинзависимые процессы в растениях. Дисс. … канд. биол. наук. Ташкент, 2007. 119 с.
  86. Нелюбина Ж.С., Касаткина Н.И. (Nelyubina, Kasatkina) Влияние ультрафиолетового облучения семян многолетних трав на их посевные качества // Аграрная наука. 2021. № 9. С. 97–100.
  87. Ненахова Е.В., Николаева Л.А. (Nenakhova, Nikolaeva) Ультрафиолетовое излучение. Влияние ультрафиолетового излучения на организм человека. Иркутск: ИГМУ, 2020. 58 с.
  88. Першакова Т.В., Купин Г.А., Михайлюта Л.В. и др. (Pershakova et al.) Исследование влияния электромагнитного поля на изменение микробиальной обсемененности растительного сырья в процессе хранения // Успехи современного естествознания. 2016. № 5. С. 74–78.
  89. Романов В.А., Галелюка И.Б., Сахаран Е.В. (Romanov et al.) Портативный флуориметр и особенности его применения // Сенсорная электроника и микроскопические технологии. 2010. Т. 1 (7). С. 146–152.
  90. Савина О.В., Ильичев Л.Ф. (Savina, Ilyichev) Использование красного света для активации прорастания семян томата с истекшим сроком годности // Вестник Рязанского государственного агротехнического университета. 2021. Т. 13. № 4. С. 104–111.
  91. Савина О.В., Руделев С.А., Родионова А.Е. (Savina et al.) Стимулирование прорастания семян зерновых некогерентным красным светом: теория и практика // Вестник ФГБОУ ВПО РГАТУ. 2015. № 1 (25). С. 60–65.
  92. Саяпина Д.Г., Сивоконь В.Е., Лимаренко Н.В. (Sayapina et al.) Исследование влияния ультрафиолетового диапазона излучения на состояние кожных покровов человека // Молодой исследователь Дона. 2022. № 3 (36). С. 144–148.
  93. Тонких А.К. (Tonkikh) Механизмы действия слабых низкочастотных электромагнитных полей на живые организмы // Узб. биол. журнал. Ташкент, 2010. Спецвыпуск. С. 93–99.
  94. Шакирова Ф.М. (Shakirova) Неспецифическая устойчивость растений к стрессовым факторам и еe регуляция. Уфа: Гилем, 2001. 160 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chromatograms of quantitative content of isohemigossypol and gossypol equivalent in hypocotyls of etiolated seedlings of cotton cultivar S-4727 48 h after infection with Verticillium dahliae fungus (infection load 2.5 million spores/ml): 1 – control (seeds before sowing were not treated, seedlings were not infected with the inducer of wilt lesion); 2 – seeds before sowing were not treated, seedlings were infected; 3 – seeds before sowing were treated with Bisol-2, seedlings were infected; 4 – seeds before sowing were treated in electromagnetic field, seedlings were infected; 5 – seeds before sowing were treated with red light, seedlings were infected.

Download (471KB)
3. Fig. 2. Effect of seed treatment with Bisol-2 immunostimulant, low frequency electromagnetic field or red light on the value of the parameter (FM – FT)/FM of induction curves of chlorophyll fluorescence of leaves of Verticillium wilt-infected cotton cultivar S-4727. Measured at wavelengths of 690 nm (A) and 730 nm (B): 1 – control (seeds before sowing were not treated, seedlings were not infected with wilt inducer); 2 – seeds before sowing were not treated, seedlings were infected; 3 – seeds before sowing were treated with Bisol-2 preparation, seedlings were infected; 4 – seeds before sowing were treated in electromagnetic field, seedlings were infected; 5 – seeds before sowing were treated with red light, seedlings were infected. The confidence interval of the mean values was at least 95% (P ≤ 0.05).

Download (163KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies