Antagonistic potential of bacterial strains of the genera Bacillus and Pseudomonas and fungi of the genus Trichoderma isolated in Uzbekistan against Phytophthora infestans

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studies have been carried out on strains of bacteria and fungi isolated in Uzbekistan, which can be used in the biological control of potato late blight. Testing was carried out on two strains of Phytophthora infestans — TVKT-1 and 4MSLK 26 — isolated from affected potato in the Tashkent region of Uzbekistan and in the Moscow region of Russia, respectively. In relation to these strains, the antagonistic activity of strains of fungi belonging to the genus Trichoderma and bacteria of the genera Bacillus and Pseudomonas isolated in Uzbekistan was studied. The maximum antagonistic activity was shown by the Bacillus safensis 3/11 strain, which inhibited the growth of the mycelium of the TVKT-1 strain by 61.9% and 4MSLK 26 by 50%. The strains B. licheniformis 6/25 and Pseudomonas alcaliphila 2/18 were also quite effective. All studied strains of fungi of the genus Trichoderma showed high antagonistic activity; the most active strain was T. asperellum Uz-A4, which inhibited the growth of mycelium of strains TVKT-1 and 4MSLK 26 by 77.1 and 73.1%, respectively.

Full Text

Restricted Access

About the authors

N. Sh. Azimova

Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan

Author for correspondence.
Email: azimovanodira@mail.ru
Uzbekistan, 100128, Tashkent

H. M. Khamidova

Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan

Email: khamidovakh@mail.ru
Uzbekistan, 100128, Tashkent

I. M. Khalilov

Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan

Email: ilkhom2002@yahoo.com
Uzbekistan, 100128, Tashkent

S. N. Elansky

M.V. Lomonosov Moscow State University; Peoples’ Friendship University of Russia

Email: snelansky@mail.ru
Russian Federation, 119991, Moscow; 117198, Moscow

E. M. Chudinova

Peoples’ Friendship University of Russia

Email: chudiel@mail.ru
Russian Federation, 117198, Moscow

H. H. Karimov

Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan

Email: karimov_h_kh@mail.ru
Uzbekistan, 100128, Tashkent

K. S. Mamanazarova

Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan

Email: karomat.3005@mail.ru
Uzbekistan, 100125, Tashkent

F. B. Kobilov

Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan

Email: bozorovich02@mail.ru
Uzbekistan, 100128, Tashkent

References

  1. Azimova N. Sh., Esenova D.B., Hamidova H.M. et al. Isolation and determination of virulence of a local strain of the fungus Phytophthora infestans from potato tubers. Universum: chemistry and biology. 2021. V. 10. P. 88 (in Russ.). https://7universum.com/ru/nature/archive/item/12324
  2. Azimova N. Sh., Khalilov I.M. Phylogenetic identification of Тrichoderma sp_uzb strain by morphological and molecular genetic methods. Chin. J. Ind. Hyg. Occup. Dis. 2021. V. 39 (13). P. 634–642. https://doi.org/10.5281/zenodo.5713519
  3. Bell D.K., Wells H.D., Markham C.R. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology. 1982. V. 72 (4). P. 379–382. http://dx.doi.org/10.1094/Phyto-72-379
  4. Benhamou N., Chet I. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction. Phytopathology. 1996. V. 86. P. 405–415.
  5. Caulier S., Gillis A., Colau G. et al. Versatile antagonistic activities of soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol. 2018. V. 9. P. 143. https://doi.org/10.3389/fmicb. 2018.00143
  6. Chen Sh., Zhang M. Wang J. et al. Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biol. Control. 2017. V. 106. P. 89–98.
  7. Cooke L.R., Schepers H.T.A.M., Hermansen A. et al. Epidemiology and integrated control of potato late blight in Europe. Potato Res. 2011. V. 54. P. 183–222. https://doi.org/10.1007/s11540-011-9187-0
  8. Elansky S.N., Chudinova E.M., Elansky A.S. et al. Microorganisms in spent water-miscible metalworking fluids as a resource of strains for their disposal. J. Cleaner Production. 2022. V. 350. P. 131438. https://doi.org/10.1016/j.jclepro.2022.131438
  9. Elansky S.N., Pobedinskaya, M.A., Kokaeva L. Yu. et al. Phytophthora infestans populations from the European part of Russia: Genotypic structure and metalaxyl resistance. J. Plant Pathol. 2015. V. 97 (3). P. 449–456. https://doi.org/10.4454/JPP.V97I3.020
  10. El-Hasan A., Ngatia G., Link T.I. et al. Isolation, identification, and biocontrol potential of root fungal endophytes associated with solanaceous plants against potato late blight (Phytophthora infestans). Plants. 2022. V. 11. P. 1605. https://doi.org/10.3390/plants11121605
  11. Ezziyyani M., Requena M.E., Egea-Gilabert C. et al. Biological control of Phytophthora root rot of pepperchili using Trichoderma harzianum and Streptomyces rochei in combination. J. Phytopathol. 2007. V. 155 (6). P. 342–349. http://dx.doi.org/10.1111/j.1439–0434.2007.01237.x
  12. Hashemi M., Tabet D., Sandroni M. et al. The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans. Fungal Biology Rev. 2022. V. 40. P. 53–69. https://doi.org/10.1016/j.fbr.2021.11.003
  13. Kamoun S., Furzer O., Jones J.D.G. et al. The Top 10 oomycete pathogens in molecular plant pathology. Molecular plant pathology. 2015. V. 16 (4). P. 413–434. https://doi.org/10.1111/mpp.12190
  14. Karimov H., Turaeva B., Azimova N. et al. Properties of Trichoderma sp. 4 micromycete. Norw. J. Developm. International Sci. 2021. V. 75. P. 15–21.
  15. Kariuki W.G., Mungai N.W., Otaye D.O. et al. Antagonistic effects of biocontrol agents against Phytophthora infestans and growth stimulation in tomatoes. African Crop Sci. J. V. 28. Suppl. issue. 2020. P. 55–70. https://dx.doi.org/10.4314/acsj.v28i1.5S
  16. Lamichhane J.R., You M.P., Laudinot V. et al. Revisiting sustainability of fungicide seed treatments for field crops. Plant Diseases. 2020. V. 104. P. 610–623.
  17. Lõoke M., Kristjuhan K., Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques. 2011. V. 50. P. 325–328. https://doi.org/10.2144/000113672.
  18. Mao T., Chen X., Ding H. et al. Pepper growth promotion and Fusarium wilt biocontrol by Trichoderma hamatum MHT1134. Biocontrol Sci. Technol. 2020. https://doi.org/10.1080/09583157.2020.1803212
  19. Momanyi N.V., Keraka N.M, Abong’o A.D. et al. Types and classification of pesticides used on tomatoes grown in Mwea irrigation scheme, Kirinyaga County, Kenya. Eur. J. Nutr. Food Safety. 2019. V. 11 (2). P. 83–97.
  20. Osorio-Hernandez E., Hernandez-Castillo F.D., Gallegos-Morales G. et al. In vitro behavior of Trichoderma spp. against Phytophthora capsici Leonian. Afr. J. Agric. Res. 2011. V. 6 (19). P. 4594–4600. http://dx.doi.org/10.5897/AJAR11.1094
  21. Samuels G.J. Trichoderma: systematics, the sexual state, and ecology. Phytopathology. 2006. V. 96. P. 195–206.
  22. Shoresh M., Mastouri F., Harman G.E. Induced systemic resistance and plant responses to fungal biocontrol agents. Ann. Rev. Phytopathol. 2010. V. 48. P. 21–43.
  23. Trang Le Vu Khanh, Le Nguyen Tan, Mai Le Thi et al. Selecting Bacillus spp., antagonist of fungal phytopathogen Phytophthora infestans causing tomato late blight. Annual Res. Rev. Biol. 2020. V. 35 (12). P. 32–40.
  24. Vleesschauwer D. de, Höfte M. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 2009. V. 51. P. 223–281.
  25. Volynchikova E., Kim K.D. Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops. Mycobiology. 2022. V. 50 (5). P. 269–293. https://doi.org/10.1080/12298093.2022.2136333
  26. Wang Y., Zhang C., Liang J. et al. Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl. Microbiol. Biotechnol. 2020. V. 104. P. 7467–7481. https://doi.org/10.1007/s00253–020–10773-y
  27. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis etc. (eds). PCR protocols. A guide to methods and applications. Academic Press, San Diego, 1990, pp. 315–322.
  28. Yao Y., Li Y., Chen Z. et al. Biological control of potato late blight using isolates of Trichoderma. Am.J. Potato Res. 2016. V. 93. P. 33–42. https://doi.org/10.1007/s12230-015-9475-3
  29. Азимова Н.Ш., Есенова Д.Б., Хамидова Х.М. и др. (Azimova et al.) Выделение и определение вирулентности местного штамма гриба Phytophthora infestans из клубней картофеля. Universum: химия и биология: электрон. научн. журн. 2021. Т. 10. С. 88.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Genomic DNA of Trichoderma strains: 1 — Trichoderma sp. Uz-A21; 2 — Trichoderma sp. Uz-A4; A — genomic DNA; M — marker of genomic DNA; B — PCR product of ITS-region of Trichoderma strains; M — DNA marker 100 bp long.

Download (289KB)
3. Fig. 2. Antagonistic activity of bacteria in relation to Phytophthora infestans TVKT-1.

Download (522KB)
4. Fig. 3. Antagonistic activity of bacteria in relation to Phytophthora infestans 4 M With LC 26.

Download (569KB)
5. Fig. 4. Antagonistic properties of fungi of the genus Trichoderma in relation to Phytophthora infestans TVKT-1 and Ph. infestans 4MSLK 26 (Day 6).

Download (621KB)
6. Fig. 5. Antagonistic activity of fungi of the genus Trichoderma in relation to Phytophthora infestans TVKT-1 and Ph. infestans 4MSLK 26 (Day 10).

Download (794KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies