Aspergillus niger АМ1 strain as causative agent for oil and petroleum products biodegradation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The biodegradation of oils by the strain Aspergillus niger AM1 VKM F-4815D was studied. Visual observation and gas chromatography-mass spectrometry showed that oil is subject to partial destruction, but cannot serve as the only source of carbon — the culture medium must contain glucose. An interesting fact is the change in consistency and hardening of oil under the influence of A. niger. This allows us to consider the possibility of using the strain for the bioremediation of soils and waters contaminated with oil. No less interesting is that, even earlier, the ability of the strain to metabolize a number of toxic phosphorus compounds, including even white and red phosphorus, was established. However, most organic solvents have a noticeable toxic effect, inhibiting growth in the presence of glucose and not becoming carbon sources in the absence of glucose.

Full Text

Restricted Access

About the authors

A. Z. Mindubaev

Kazan National Research Technological University

Author for correspondence.
Email: mindubaev@iopc.ru
Russian Federation, 420015, Kazan

E. V. Babynin

Kazan (Volga Region) Federal University

Email: edward.b67@mail.ru
Russian Federation, 420008, Kazan

V. M. Babaev

Institute of Organic and Physical Chemistry named after. A.E. Arbuzov Kazan Scientific Center RAS

Email: babaev-84@mail.ru
Russian Federation, 420088, Kazan

V. V. Tutuchkina

Institute of Organic and Physical Chemistry named after. A.E. Arbuzov Kazan Scientific Center RAS

Email: tutuchkinav@mail.ru
Russian Federation, 420088, Kazan

S. T. Minzanova

Institute of Organic and Physical Chemistry named after. A.E. Arbuzov Kazan Scientific Center RAS

Email: minzanova@iopc.ru
Russian Federation, 420088, Kazan

L. G. Mironova

Institute of Organic and Physical Chemistry named after. A.E. Arbuzov Kazan Scientific Center RAS

Email: mironoval1963@gmail.com
Russian Federation, 420088, Kazan

Yu. V. Karaeva

Kazan National Research Technological University

Email: julieenergy@list.ru
Russian Federation, 420015, Kazan

References

  1. Al-Hawash A.B., Zhang X., Ma F. Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiology Open. 2019. V.8 (1). P. e00619. https://doi.org/10.1002/mbo3.619
  2. Asemoloye M.D., Tosi S., Daccò C. et al. Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms. 2020. V. 8 (12). P. 1–19. https://doi.org/10.3390/microorganisms8121912
  3. Bidoia E.D., Montagnolli R.N., Lopes P.R.M. Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. In: A. Mendez-Vilas (ed.). Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, 2010, pp. 1277–1288.
  4. Bilay V.I., Koval E.Z. Aspergilli. Key-book. Naukova Dumka, Kiev, 1988 (in Russ.).
  5. Cairns T.C., Nai C., Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 2018. V. 5 (13). P. 1–14. https://doi.org/10.1186/s40694-018-0054-5
  6. Gerginova M., Manasiev J., Yemendzhiev H. et al. Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus. Zeitschr. Naturforschung C. 2013. V. 68 (9–10). P. 384–393. https://doi.org/10.1515/znc-2013-9-1006
  7. Hanson K.G., Desai J.D., Desai A.J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol. Tech. 1993. V. 7 (10). P. 745–748. https://doi.org/10.1590/S1517-838220080001000028
  8. Herrera-Gallardo B.E., Guzmán-Gil R., Colín-Luna J.A. et al. Atrazine biodegradation in soil by Aspergillus niger. Can J. Chemical Engineering. 2021. V. 99 (4). P. 932–946. https://doi.org/10.1002/cjce.23924
  9. Khan S., Nadir S., Shah Z. et al. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environm. Pollut. 2017. V. 225. P. 469–480. https://doi.org/10.1016/j.envpol.2017.03.012
  10. Kubicki S., Bollinger A., Katzke N. et al. Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar. Drugs. 2019. V. 17 (408). P. 1–30. https://doi.org/10.3390/md17070408
  11. Mariano A.P., Bonotto D.M., Angelis D.F. et al. Biodegradability of commercial and weathered diesel oils. Brazilian J. Microbiol. 2008. V. 39. P. 33–142.
  12. Mindubaev A.Z., Kuznetsova S.V., Evtyugin V.G. et al. Effect of white phosphorus on the survival, cellular morphology, and proteome of Aspergillus niger. Prikladnaya biokhimiya i mikrobiologiya. 2020. V. 56 (2). P. 194–201 (in Russ.). https://doi.org/10.1134/S0003683820020118
  13. Mindubaev A.Z., Babynin E.V., Bedeeva E.K. et al. Biological degradation of yellow (white) phosphorus, a compound of first class hazard. Russian J. Inorganic Chem. 2021. V. 66 (8). P. 1239–1244. https://doi.org/10.1134/S0036023621080155
  14. Mindubaev A.Z., Babynin E.V., Minzanova S.T. et al. A method for oil detoxification using the Aspergillus niger strain AM1VKM F-4815D. RF patent. 2023. № 2791735.
  15. Morgan J., Greenberg A. Insights into the formation and isomerization of the benzene metabolite muconaldehyde and related molecules: comparison of computational and experimental studies of simple, benzo-annelated, and bridged 2,3-epoxyoxepins. J. Org. Chem. 2010. V. 75 (14). P. 4761–4768. https://doi.org/10.1021/jo100610g
  16. Okoro C.C., Amund O.O. Biodegradation of produced water hydrocarbons by Aspergillus fumigatus. J. American Sci. 2010. V. 6 (3). P. 143–149. https://doi.org/10.12691/jaem-2–2–3
  17. Pathak V.M. Review on the current status of polymer degradation: a microbial approach. Biores. Bioprocessing. 2017. V. 4 (15). P. 1–31. https://doi.org/10.1186/s40643–017–0145–9
  18. Perdana A.T., Arianata M., Larasati T.R.D. Optimization of benzene and toluene biodegradation by Aspergillus niger and Phanerochaete chrysosporium. J. Al-Azhar Indonesia Ser. Sains Dan Teknol. 2019. V. 5 (2). P. 87–91. https://doi.org/10.36722/sst.v5i2.355
  19. Perrone G., Susca A., Cozzi G. et al. Biodiversity of Aspergillus species in some important agricultural products. Stud. Mycol. 2007. Vol. 59. P. 53–66. https://doi.org/10.3114/sim.2007.59.07
  20. Santacoloma-Londoño S.P. Evaluation of the biodegradation of polyethylene, polystyrene and polypropylene, through controlled tests in solid suspension with the fungus Aspergillus flavus. Scientia et Technica. 2019. V. 24 (3). P. 532–540. https://doi.org/10.22517/23447214.20731
  21. Singh B.K., Walker A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 2006. V. 30. № 3. P. 428–471. https://doi.org/10.1111/j.1574–6976.2006.00018.x
  22. Singh V., Dubey M., Bhadauria S. Biodeterioration of polyethylene high density by Aspergillus versicolor and Aspergillus terreus. J. Advanced Laboratory Res. Biol. 2012. V. 3 (1). P. 47–49.
  23. Supriya C., Neehar D. Biodegradation of phenol by Aspergillus niger. IOSR J. Pharmacy. 2014. V. 4 (7). P. 11–17. https://doi.org/10.9790/3013–0407011017
  24. Tebbouche L., Hank D., Zeboudj S. et al. Evaluation of the phenol biodegradation by Aspergillus niger: application of full factorial design methodology. Desalination and Water Treatment. 2015. V. 7 (13). P. 1–7. https://doi.org/10.1080/19443994.2015.1053991
  25. Zhang J., Xue Q., Gao H. et al. Biodegradation of paraffin wax by crude Aspergillus enzyme preparations for potential use in removing paraffin deposits. J. Basic Microbiol. 2015. V. 55 (11). P. 1326–1335. https://doi.org/10.1002/jobm.201500290
  26. Билай В.И., Коваль Э.З. (Bilay, Koval) Аспергиллы. Определитель. Киев: Наук. думка, 1988. 204 с.
  27. Миндубаев А.З., Кузнецова С.В., Евтюгин В.Г. и др. (Mindubaev et al.) Влияние белого фосфора на выживаемость, клеточную морфологию и протеом Aspergillus niger // Прикладная биохимия и микробиология. 2020. Т. 56. № 2. С. 194–201.
  28. Миндубаев А.З., Бабынин Э.В., Минзанова С.Т. и др. Способ детоксикации нефти с применением штамма Aspergillus niger АМ1ВКМ F-4815D. Патент РФ. 2023. № 2791735.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oil samples inoculated with the Aspergillus niger strain AM1: G – glucose; NK – negative control; N-Sh – oil of the Novo-Sheshminskoye field; P – oil of the Pervomaisky field. Mycelium growth is noticeable only in the presence of glucose. The picture was taken on the 36th day after sowing.

Download (1MB)
3. Fig. 2. Decrease in the amount of oil components from the Pervomaisky field as a result of biodegradation by the fungus Aspergillus niger AM1.

Download (312KB)
4. Fig. 3. Growth of Aspergillus niger AM1 on acetonitrile: A – acetonitrile; G – glucose; NK – negative control. The blue color of the oxidized 2,6-dichlorophenolindophenol indicates the absence of metabolic processes. The absence of color in the reduced dye indicates the vital activity of A. niger. The picture was taken on the 26th day after sowing.

Download (508KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies