Aspergillus tabacinus as a producer of antithrombotic proteases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Microfungi of the genus Aspergillus are well-known as producers of fibrinolytic and plasminogen activating proteases. But for development of new antithrombotics we should use strains which extracellular proteases correspond to these criteria: 1) demonstrate anticoagulant, fibrinolytic and plasminogen activating activities at the same time; 2) have narrow substrate specificity; 3) are able to hydrolase substrates of two following each other proteins of hemostasis system. According to these criteria Aspergillus tabacinus was chosen. Maximal activities of culture liquid of this strain grown in optimal conditions were 87 Е × 10–3 with activated protein C substrate S-2366 and 73 Е × 10–3 with thrombin substrate Chromozym TH. Fibrinogenolytic activity of lyophilized enzyme preparation after ammonium sulfate precipitation and dialysis was 779.1 Е/mg of protein.

Full Text

Restricted Access

About the authors

V. N. Lavrenova

M.V. Lomonosov Moscow State University

Author for correspondence.
Email: pkviktoria@mail.ru
Russian Federation, Moscow

A. A. Osmolovskiy

M.V. Lomonosov Moscow State University

Email: aosmol@mail.ru
Russian Federation, Moscow

References

  1. Afini A.V.M., Sooraj S.N., Smitha K.V. et al. Production and partial characterization of fibrinolytic enzyme from a soil isolate Aspergillus carbonarius S-CSR-0007. Int. J. Pharm. Pharm. Sci. 2016. V. 8. P. 142–148. http://dx.doi.org/10.22159/ijpps.2016v8i12.15069
  2. Anson M. Crystalline carboxypolypeptidase. Science. 1935. V. 81 (2106). P. 467–468.
  3. Bokarev I.N., Popova L.V. Modern problems of thrombosis of arteries and veins. Prakticheskaya meditsina. 2014. V. 6 (82). P. 13–17 (in Russ.).
  4. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976. V. 72. P. 248–254. http://dx.doi.org/10.1006/abio.1976.9999
  5. Chimbekujwo K.I., Ja’afaru M.I., Adeyemo O.M. Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci. Afr. 2020. V. 8. P. e00398. https://doi.org/10.1016/j.sciaf.2020.e00398
  6. Galiakberova A.A., Bednenko D.M., Kreyer V.G. et.al. Formation and properties of the extracellular proteinase of Aspergillus flavus O-1 micromycete active against fibrillar proteins. Appl. Biochem. Microbiol. 2021. V. 57 (5). P. 586–593. http://dx.doi.org/10.1134/S0003683821050069
  7. Hagihara B., Matsubara H., Nakai M. et al. Crystalline bacterial proteinase. J. Biochem. 1958. V. 45 (3). P. 185–194.
  8. Kornienko E.I., Osmolovskiy A.A., Kreier V.G. et al. Characteristics and properties of the complex of proteolytic enzymes of the thrombolytic action of the micromycete Sarocladium strictum. Prikladnaya biokhimiya i mikrobiologiya. 2021. V. 57 (1). P. 57–64 (in Russ.). http://dx.doi.org/10.1134/S0003683821010129
  9. Kotb E., Helal G.E.D.A., Edries F.M. Screening for fibrinolytic filamentous fungi and enzymatic properties of the most potent producer, Aspergillus brasiliensis AUMC9735. Biologia. 2015. V. 70. P. 1565–1574. https://doi.org/10.1515/biolog-2015–0192
  10. Kurosawa Y., Nirengi S., Homma T. et al. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profile. Sci. Rep. 2015. V. 5. P. 11601–11607. https://doi.org/10.1038/srep11601
  11. Maksimenko A.V. Cardiac biopharmaceuticals in the concept of targeted drug transport: practical results and research prospects. Acta Naturae. 2012. T. 4 (3). P. 76–86 (in Russ.).
  12. Nair S.R., C S.D. Serratiopeptidase: an integrated view of multifaceted therapeutic enzyme. Biomolecules. 2022. V. 12 (10). P. 1468–1479. https://doi.org/10.3390/biom12101468
  13. Osmolovskiy A.A., Zvonareva E.S., Kreier V.G. et al. The effects of micromycete extracellular proteases of the Aspergillus genus on the proteins of the haemostatic system. Russ. J. Bioorg. Chem. 2014. V. 40 (6). P. 634–639. http://dx.doi.org/10.1134/S1068162014060120
  14. Osmolovskiy A.A., Kreier V.G., Baranova N.A. et al. Properties of extracellular proteinase — an activator of protein C in blood plasma formed by Aspergillus ochraceus. Appl. Biochem. Microbiol. 2015. V. 51 (1). P. 95–101. http://dx.doi.org/10.1134/S0003683815010123
  15. Osmolovskiy A.A., Lukianova A.A., Zvonareva E.S. et al. Combined microbiological approach to screening of producers of proteases with hemostasis system proteins activity among micromycetes. Biotech. Rep. 2018. V. 19. P. e00265. https://doi.org/10.1016/j.btre.2018.e00265
  16. Osmolovskiy A.A., Schmidt L., Orekhova A.V. et al. Effect of proteinase from Aspergillus fumigatus on blood plasma proteins. Vestnik Moskovskogo universiteta. Biol. 2021. V. 76. P. 71–76 (in Russ.).
  17. Pavlyukova E.B., Belozersky M.A., Dunaevskiy Yu.E. Extracellular proteolytic enzymes of filamentous fungi. Biokhimiya. 1998. V. 63 (8). P. 899–928 (in Russ.).
  18. Popova E.A., Kreyer V.G., Komarevtsev S.K. et al. Properties of extracellular proteinase of the micromycete Aspergillus ustus 1 and its high activity during fibrillary-proteins hydrolysis. Prikladnaya biokhimiya i mikrobiologiya. 2021. V. 57 (2). P. 200–205 (in Russ.). http://dx.doi.org/10.1134/S0003683821020125
  19. Sharma C., Osmolovskiy A., Singh R. Microbial fibrinolytic enzymes as anti-thrombotics: production, characterisation and prodigious biopharmaceutical applications. Pharmaceutics. 2021. V. 13 (11). P. 1880–1911. http://dx.doi.org/10.3390/pharmaceutics13111880
  20. Shilpa H.K., Ambekar J.G., Dongre N.N. et al. Application of fibrinolytic enzyme from Aspergillus tamarii — in vitro studies. Eur. J. Pharm. Med. Res. 2019. V. 6. P. 560–562. http://dx.doi.org/10.18231/2394–6377.2018.0092
  21. Shirasaka N., Naitou M., Okamura K. et al. Purification and characterization of a fibrinolytic protease from Aspergillus oryzae KSK-3. Mycoscience. 2012. V. 53. P. 354–364. https://doi.org/10.1007/S10267–011–0179–3
  22. Surkova D., Lavrenova V., Klyagin S. et al. Screening of proteases produced by Aspergillus micromycetes active against proteins of the hemostasis system. Curr. Med. Mycol. 2023. V. 9 (1). P. 8–13. https://doi.org/10.22034/cmm.2023.150674
  23. Vanderschueren S., Dens J., Kerdsinchai P. et al. Randomized coronary patency trial of double-bolus recombinant staphylokinase versus front-loaded alteplase in acute myocardial infarction. Am. Heart J. 1997. V. 134 (2, pt 1). P. 213–219. https://doi.org/10.1016/s0002–8703(97)70127–3
  24. Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol. Microbiol. 1989. V. 3 (12). P. 1825–1831. https://doi.org/10.1111/j.1365–2958.1989.tb00169.x
  25. Yadav S., Siddalingeshwara K.G. Biosynthesis of clot busting fibrinolytic enzyme from Aspergillus japonicum by supplementing carbon sources. Int. J. Curr. Microbiol. Appl. Sci. 2016. V. 5 (3). P. 860–864. http://dx.doi.org/10.20546/ijcmas.2016.503.099
  26. Zvonareva E.S., Osmolovskiy A.A., Kreier V.G. et al. Production of proteinase with plasmin-like and prekallikrein activating activity by the micromycete Aspergillus terreus. Prikladnaya biokhimiya i mikrobiologiya. 2018. V. 54 (2). P. 206–210 (in Russ.). http://dx.doi.org/10.1134/S0003683818020151
  27. Бокарев И.Н., Попова Л.В. (Bokarev, Popova) Современные проблемы тромбозов артерий и вен // Практ. мед. 2014. Т. 6. № 82. С. 13–17.
  28. Галиакберова А.А., Бедненко Д.М., Крейер В.Г. и др. (Galiakberova et al.) Образование и свойства внеклеточной протеиназы микромицета Aspergillus flavus O-1, активной по отношению к фибриллярным белкам // Прикл.биохим. микробиол. 2021. Т. 57. № 5. С. 458–466.
  29. Звонарева Е.С., Осмоловский А.А., Крейер В.Г. и др. (Zvonareva et al.) Продукция протеиназ с плазминоподобной и активирующей прекалликреин активностью микромицетом Aspergillus terreus // Прикл. Биохим. микробиол. 2018. Т. 54. № 2. С. 195–200.
  30. Корниенко Е.И., Осмоловский А.А., Крейер В.Г. и др. (Korinenko et al.) Характеристика и свойства комплекса протеолитических ферментов тромболитического действия микромицета Sarocladium strictum // Прикл. биохим. микробиол. 2021. Т. 57. № 1. С. 46–53.
  31. Максименко А.В. (Maksimenko) Кардиологические биофармацевтики в концепции направленного транспорта лекарств: практические результаты и исследовательские перспективы // Acta Naturae. 2012. Т. 4. № 3. С. 76–86.
  32. Осмоловский А.А., Звонарева Е.С., Крейер В.Г. и др. (Osmolovskiy et al.) Воздействие внеклеточных протеаз микромицетов рода Aspergillus на белки системы гемостаза // Биоорг. химия. 2014. Т. 40. № 6. С. 688–694.
  33. Осмоловский А.А., Крейер В.Г., Баранова Н.А. и др. (Osmolovskiy et al.) Свойства внеклеточной протеиназы — активатора протеина С плазмы крови, образуемой микромицетом Aspergillus ochraceus // Прикл. биохим. микробиол. 2015. Т. 51. № 1. С. 86–92.
  34. Осмоловский А.А., Звонарева Е.С., Крейер В.Г. и др. (Osmolovskiy et al.) Тромболитический потенциал внеклеточной протеиназы микромицета Aspergillus terreus 2 // Микология и фитопатология. 2021. Т. 55. № 3. С. 225–228.
  35. Осмоловский А.А., Крейер В.Г., Баранова Н.А. и др. (Osmolovskiy et al.) Протеолитические ферменты мицелиальных грибов с плазминоподобной и активаторной к плазминогену активностью // Усп. совр. биол. 2021. Т. 141. № 5. С. 467–482.
  36. Осмоловский А.А., Шмидт Л., Орехова А.В. и др. (Osmolovskiy et al.) Влияние протеиназы Aspergillus fumigatus на белки плазмы крови // Вестник Московского университета. Биол. 2021. Т. 76. С. 71–76.
  37. Павлюкова Е.Б., Белозерский М.А., Дунаевский Я.Е. (Pavlyukova et al.) Внеклеточные протеолитические ферменты мицелиальных грибов // Биохимия. 1998. Т. 63. № 8. С. 1059–1089.
  38. Попова Е.А., Крейер В.Г., Комаревцев С.К. и др. (Popova et al.) Свойства высокоактивной в отношении фибриллярных белков внеклеточной протеиназы, образуемой микромицетом Aspergillus ustus 1 // Прикл. биохим. микробиол. 2021. Т. 57. № 2. С. 138–144.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of protease accumulation in the culture fluid during the growth of Aspergillus tabacinus on the fermentation medium 1: 1 – activity on the substrate S-2366; 2 – protein concentration; 3 – activity on the substrate Chromozym TH; 4 – azocazeinolytic activity.

Download (161KB)
3. Fig. 2. Dynamics of protease accumulation in the culture fluid during the growth of Aspergillus tabacinus on the fermentation medium 2: 1 – activity on the substrate S-2366; 2 – concentration.

Download (144KB)
4. Fig. 3. The effect of the pH of the fermentation medium 2 on the production of proteases of Aspergillus tabacinus.

Download (227KB)
5. Рис. 4. Влияние температуры культивирования на ферментационной среде 2 на продукцию протеаз Aspergillus tabacinus.

Download (118KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies