Characterization of the Northwestern Population of Puccinia striiformis f. sp. tritici on the Basis of Virulence and Representation of Invasive PstS1 and PstS2 Races

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The expansion of the area of significance of yellow rust was observed in the last years. Until recently, in the conditions of the North-West, the disease occurred sporadically. However, in recent years, its strong development has been observed on wheat samples studied on the collection fields of scientific research institutes and State variety plots, as well as on some commercial fields in the Leningrad region. The aim of this work is to study the virulence and racial composition of the yellow rust pathogen in the Northwest and to conduct a molecular analysis of population samples for the presence of invasive races PstS1 and PstS2. Leaves of common wheat samples with of Puccinia striiformis urediniopustules were collected on commercial fields, State variety plots and experimental fields of the Research Institutes in 2020–2022. Near isogenic Avocet lines (Av NIL) with genes Yr1, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr18, Yr24, Yr26, YrSp, Yr27 and differential varieties from international [Chinese 166 (Yr1), Lee (Yr7, Yr+), Heines Kolben (Yr6, Yr+), Vilmorin 23 (Yr3), Moro (Yr10, YrMor), Strubes Dickkopf (YrSD, Yr25, Yr+), Suwon 92/Omar) (YrSu, Yr+)] and European [Hybrid 46 (Yr4, Yr+), Reichersberg 42 (Yr7, Yr+), Heines Peko (Yr2, Yr6, Yr25, Yr+), Nord Desprez (Yr3, YrND, Yr+), Compair (Yr8, Yr19), Carstens V (Yr32, Yr25, Yr+), Spaldings Prolific (YrSP, Yr+), Heines VII (Yr2, Yr25, Yr+)] sets used for characteristic of pathogen virulence. Set of SCAR markers (SCP19M24a1, SCP19M24a2, SCP19M26a1, SCP19M26a2) used for identification of invasive races. A total 92 isolates were studied. High effectiveness at the seedling stage had genes Yr5, Yr10, Yr15, Yr24, Yr26. Isolates virulent to differential varieties Moro (Yr10, YrMor) and Nord Desprez (Yr3, YrND, Yr+) was not determined. Virulence to wheat genotypes with Yr17 gene was rare. Twenty-four virulence phenotypes identified using 29 virulence testers. The number of virulence alleles varied from 7 to 21. At the same time, differences between the phenotypes of P. striiformis on the studied common wheat varieties were insignificant. Most of them have united in a common group. Two groups of isolates slightly differentiated from them. The first included isolates from varieties characterized by a smaller number of virulence alleles, the second – with the maximum number of virulence alleles. Molecular analysis of the northwestern po-pulation revealed isolates belonging to the invasive PstS2 group in 2020 and 2022. Their virulence did not differ significantly from other northwestern phenotypes. The high evolutionary potential predetermines the need for annual monitoring of pathogen populations based on virulence and representation of invasive races.

About the authors

E. L. Shaydayuk

All Russian Institute for Plant Protection

Author for correspondence.
Email: eshaydayuk@bk.ru
Russia, St. Petersburg

E. I. Gultyaeva

All Russian Institute for Plant Protection

Author for correspondence.
Email: eigultyaeva@gmail.com
Russia, St. Petersburg

References

  1. Ali S., Rodriguez-Algaba J., Thach T. et al. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 2017. V. 8. P. 1057. https://doi.org/10.3389/fpls.2017.01057
  2. Bogoyavlenskaya R.A. Specialization of the species Puccinia glumarum (Schmidt) Eriks. et Henn. Botanicheskiy zhurnal. 1962. V. 47 (8). P. 197–201 (in Russ.).
  3. Brar G.S., Kutcher H.R. Race characterization of Puccinia striiformis f. sp. tritici, the cause of wheat stripe rust, in Saskatchewan and southern Alberta, Canada and virulence comparison with races from the United States. Plant Dis. 2016. V. 100. P. 1744–1753. https://doi.org/10.1080/07060661.2014.924560
  4. Chen X.M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can. J. Plant Pathol. 2005. V. 27 (3). P. 314–337. https://doi.org/10.1080/07060660509507230
  5. Chen X.M. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can. J. Plant Pathol. 2014. V. 36 (3). P. 311–326. https://doi.org/10.1080/07060661.2014.924560
  6. Gangwar O.P., Kumar S., Bhardwaj S.C. et al. Virulence and molecular diversity among Puccinia striiformis f. sp. tri-tici pathotypes identified in India between 2015 and 2019. Crop Protection. 2021. V. 148. P. 105717. https://doi.org/10.1016/j.cropro.2021.105717
  7. Gassner G., Straib W. Untersuchungen Über die Infektionsbedingungen von Puccinia glumarum und Puccinia graminis. Arb. Biol. Reichsanst.Land-Forst-wirtsch Berlin-Dahlem. 1929. V. 16 (4). P. 609–629.
  8. Georgievskaya N.A. To the knowledge of the mass development of wheat yellow rust. Trudy VIZR. 1966. V. 26. P. 55–63 (in Russ).
  9. Gultyaeva E., Shaydayuk E., Gannibal P. Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture. 2021. V. 11 (4). P. 319. https://doi.org/10.3390/agriculture11040319
  10. Gultyaeva E.I., Shaydayuk E.L. Virulence of Russian populations of the stripe rust causal agent. Mikologiya i fitopatologiya. 2020. V. 54 (4). P. 299–304 (in Russ). https://doi.org/10.31857/S0026364820040042
  11. Gultyaeva E., Shaydayuk E., Kosman E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture. 2022. V. 12 (11). P. 1957. https://doi.org/10.3390/agriculture12111957
  12. Hendrix J.W., Lloyd E.H. Low temperature survival of the stripe rust fungus in host tissue. Phytopathology. 1966. V. 56 (2). P. 148.
  13. Hovmøller M.S., Justesen A.F., Brown J.K.M. Clonality and longdistance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathol. 2002. V. 51 (1). P. 24–32. https://doi.org/10.1046/j.1365-3059.2002.00652.x
  14. Hovmøller M.S., Patpour M., Rodriguez-Algaba J. et al. GRRC report of yellow and stem rust races 2022. GRRC, Aarhus, 2022. https://agro.au.dk/fileadmin/ www.grcc.au.dk/International_Services/Pathotype_YR_results/GRRC_annual_report_2022.pdf
  15. Hovmøller M.S., Patpour M., Rodriguez-Algaba J. et al. GRRC report of yellow and stem rust races 2021. GRRC, Aarhus, 2021: https://agro.au.dk/fileadmin/www.grcc.au.dk
  16. Justesen A.F., Ridoutb C.J., Hovmøller M.S. The recent history of Puccinia striiformis f.sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant. Pathol. 2002. V. 51 (1). P. 13–23. https://doi.org/10.1046/j.0032-0862.2001.00651.x
  17. Kaidash A.S., Shinkarev V.P., Afonin S.P. An increase in visible infection rates on wheat plants attacked by yellow rust as a result of mycelial growth in leaves. Mikologiya i fitopatologiya. 1975. V. 9 (1). P. 57–60 (in Russ.).
  18. Kokhmetova A., Rsaliyev A., Malysheva A. et al. Identification of stripe rust resistance genes in common wheat cultivars and breeding lines from Kazakhstan. Plants. 2021. V. 10. P. 2303. https://doi.org/10.3390/plants10112303
  19. Kokhmetova A., Sharma R., Rsaliyev S. et al. Evaluation of Central Asian wheat germplasm for stripe rust resistance. Plant Genet. Resour. 2018. V. 16. P. 178–184. https://doi.org/org/10.1017/S1479262117000132
  20. Koyshibaev M. About the international conference on yellow rust. Mikologiya i fitopatologiya. 2002. V. 36 (4). P. 83–85 (in Russ.).
  21. Krayeva G.A., Matveyenko A.N. Race composition of Puccinia striiformis West. on small grasses in the North Caucasus. Mikologiya i fitopatologiya. 1974. V. 8 (6). P. 521–523 (in Russ.).
  22. Kuznetsova R.A. Specialization of the species Puccinia glumarum and the role of grasses in the transmission of infection to cereals. Abstract Thesis … Cand. Biol. All-Union Scientific Research Institute for Plant Protection (VIZR), Leningrad, 1956 (in Russ.).
  23. Martínez-Moreno F., Solís I. Wheat rust evolution in Spain: an historical review. Phytopathologia Mediterranea. 2019. V. 58 (1). P. 3–16. https://doi.org/10.13128/Phytopathol_Mediterr-22561
  24. Mikhailova L.A., Gultyaeva E.I., Mironenko N.V. Methods for studying the structure of populations of the leaf rust causative agent. In: Guidelines for plant protection. VIZR, SPb., 1998, pp. 105–126 (in Russ.).
  25. Popov D.F. Local sources of yellow rust pathogen of wheat in the Altai. Sibirskiy vestnik. 1979. V. 3. P. 63–66 (in Russ.).
  26. Sharma-Poudyal D., Chen X.M., Wan A.M. et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013. V. 97. P. 379–386. https://doi.org/10.1094/pdis01-12-0078-re
  27. Sharp E.L. Prepenetration and postpenetration environment and development of Puccinia striiformis on wheat. Phytopathology. 1965. V. 55 (2). P. 198–203.
  28. Singh R.P., Hodson D.P., Jin Y. et al. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology. 2015. V. 105 (7). P. 872–884. https://doi.org/10.1094/PHYTO-01-15-0030-FI
  29. Stubbs R.W. Influence of light intensity on the reactions of wheat and barley seedlings to Puccinia striiformis. Phytopathology. 1967. V. 57 (6). P. 615–619.
  30. Walter S., Ali S., Kemen E. et al. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecol. Evol. 2016. V. 6 (9). P. 2790–2804. https://doi.org/10.1002/ece3.2069
  31. Wellings C.R. Global status of stripe rust: A review of historical and current threats. Euphytica. 2011. V. 179 (1). P. 129–141. https://doi.org/10.1007/s10681-011-0360-y
  32. Zadoks J.C., Bouwman J.J. Epidemiology in European. In: A.A. Roelfs, W.R. Bushnell (eds). The cereal rusts. Vol. 2: Diseases, distribution, epidemiology, and control. Acad. Press, Orlando, 1985, pp. 329–369.
  33. Zeleneva Y.V., Sudnikova V.P., Buchneva G.N. Immunological characteristics of soft winter wheat varieties in conditions of the CBR. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2022. № 96. P. 95–99 (in Russ). https://doi.org/10.21515/1999-1703-96-95-99
  34. Богоявленская Р.А. (Bogoyavlenskaya) Специализация вида Puccinia glumarum (Schmidt) Eriks. et Henn. // Ботанический журнал. 1962. Т. 47 (8). С. 1197–1201.
  35. Георгиевская Н.А. (Georgievskaya) К познанию закономерностей развития желтой ржавчины пшеницы // Труды ВИЗР. 1966. № 26. С. 55–63.
  36. Гультяева Е.И., Шайдаюк Е.Л. (Gultyaeva, Shaydayuk) Вирулентность российских популяций возбудителя желтой ржавчины пшеницы // Микология и фитопатология. 2020. Т. 54. № 4. С. 299–304.
  37. Зеленева Ю.В., Судникова В.П., Бучнева Г.Н. (Zeleneva et al.) Иммунологическая характеристика сортов озимой мягкой пшеницы в условиях ЦЧР // Труды Кубанского государственного аграрного университета. 2022. № 96. С. 95–99.
  38. Кайдаш А.С., Шинкарев В.П., Афонин С.П. (Kaydash et al.) Увеличение степени видимого заражения растений пшеницы желтой ржавчиной за счет роста мицелия в листьях // Микология и фитопатология. 1975. Т. 9. № 1. С. 57–60.
  39. Койшибаев М. (Koyshibaev) О международной конференции по желтой ржавчине // Микология и фитопатология. 2002. Т. 36. № 4. С. 83–85.
  40. Краева Г.А., Матвеенко А.Н. (Kraeva, Matveenko) Расовый состав Puccinia striiformis West. на злаках в условиях Северного Кавказа // Микология и фитопатология. 1974. Т. 8. № 6. С. 521–523.
  41. Кузнецова Р.А. (Kuznetsova) Специализация вида Puccinia glumarum и роль злаковых трав в передаче инфекции на зерновые культуры. Автореф. дисс. … канд. биол. наук. Л.: Всесоюзный научно-исследовательский институт защиты растений (ВИЗР), 1956. 20 с.
  42. Михайлова Л.А., Гультяева Е.И., Мироненко Н.В. (Mikhailova et al.) Методы исследований структуры популяции возбудителя бурой ржавчины пшеницы // Сборник методических рекомендаций по защите растений. СПб.: ВИЗР, 1998. С. 105–126.
  43. Попов Д.Ф. (Popov) Местные источники возбудителя желтой ржавчины пшеницы в Алтайском крае // Сибирский вестник. 1979. № 3. С. 63–66.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (80KB)

Copyright (c) 2023 Е.Л. Шайдаюк, Е.И. Гультяева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies