Sorption and Biodestruction of Microcystin-LR by Penicillium verrucosum CP4 Strain Isolated from the Bottom Sediments of Sestroretsky Razliv Lake

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The strain of fungus СР4 capable of degrading microcystin – LR (MC-LR) was isolated from the bottom sediments of Sestroretsky Razliv Lake. Based on DNA ITS sequencing and morphological analysis, the CP4 strain was identified as Penicillium verrucosum. The decrease in the content of MC-LR during the cultivation of strain СР4 from 0.64 μg/mL to 0.31 μg/mL occurs mainly due to biodegradation and, to a lesser extent, due to the sorption of the toxin by fungal cells. The method of biotesting (Daphnia magna) showed a decrease in the toxicity of the culture liquid in the process of MC-LR biodegradation by the strain СР4. The obtained results allow us to consider Penicillium verrucosum СР4 as a promising strain for mycoremediation of water bodies contaminated with microcystins.

About the authors

N. G. Medvedeva

St. Petersburg Federal Research Center of the Russian Academy of Sciences,
Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Author for correspondence.
Email: ngmedvedeva@gmail.com
Russia, 197110, St. Petersburg

I. L. Kuzikova

St. Petersburg Federal Research Center of the Russian Academy of Sciences,
Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Author for correspondence.
Email: ilkuzikova@ya.ru
Russia, 197110, St. Petersburg

References

  1. Balsano E., Esterhuizen-Londt M., Hoque E. et al. Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: a study on the growth responses and biosorption potential of Mucor hiemalis EH5 against cyanobacterial toxins. Int. J. Water Wastewater Treat. 2015. V. 1 (1). P. 1–9.
  2. Carmichael W.W., Boyer G.L. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae. 2016. V. 54. P. 194–212. https://doi.org/10.1016/j.hal.2016.02.002
  3. Chernova E.N., Russkikh I.V., Voyakin E. et al. Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia. Oceanological and Hydrobiological Studies. 2016. V. 45. P. 466–484. https://doi.org/10.1515/ohs-2016-0040
  4. Chorus I., Bartram J. Toxic Cyanobacteria in water: a guide to public health significance, monitoring and management. World Health Organization. Spon, Chapman and Hall, London 1999.
  5. Christoffersen K., Lyck S., Winding A. Microbial activity and bacterial community structure during degradation of microcystins. Aquat. Microb. Ecol. 2002. V. 27 (2) P. 125–136. https://doi.org/10.3354/ame027125
  6. Esterhuizen-Londt M., Hertel S., Pflugmacher S. Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis. Biotechnology Lett. 2017. V. 39 (10) P. 1537–1545.
  7. Guida M., Inglese M., Meriç S. A multi-battery toxicity investigation on fungicides. 2008. V. 226 (1–3). P. 262–270.
  8. Huisman J., Codd G.A., Paerl H.W. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018. V. 16. P. 471–483.
  9. Jia Y., Du J., Song F. et al. A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806. Applied biochemistry and biotechnology. 2012a. V. 166 (4). P. 987–996.
  10. Jia Y., Wang C., Zhao G. et al. The possibility of using cyanobacterial bloom materials as a medium for white rot fungi. Letters in applied microbiology. 2012b. V. 54 (2). P. 96–101.
  11. Kuzikova I., Safronova V., Zaytseva T. et al. Fate and effects of nonylphenol in the filamentous fungus Penicillium expansum isolated from the bottom sediments of the Gulf of Finland. J. Marine Systems. 2017. V. 171. P. 111–119. https://doi.org/10.1016/j.jmarsys.2016.06.003
  12. Massey I.Y., Yang F.A. Mini review on microcystins and bacterial degradation. Toxins. 2020. V. 12 (4). P. 268. https://doi.org/10.3390/toxins12040268
  13. Medvedeva N., Zaytseva T., Kuzikova I. Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113. J. Marine Systems. 2017. V. 171. P. 120–128. https://doi.org/10.1016/j.jmarsys.2017.01.009
  14. Medvedeva N.G., Kuzikova I.L. Mycrocystin-LR degradation by indigenous bacterial community of Rybinsk Reservoir. IOP Conference Series Earth and Environmental Science. 2021. V. 834 (1). 012066. https://doi.org/10.1088/1755-1315/834/1/012066
  15. Meriluoto J., Spoof L., Codd G.A. (eds). Handbook of cyanobacterial monitoring and cyanotoxin analysis. 2017. John Wiley and Sons, Ltd, Chichester.
  16. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, waste by mortality and changes in the fertility of daphnia. FR.1.39.2007.03222. Aquaros, Moscow, 2007 (in Russ.).
  17. Mohamed Z.A., Alamri S., Hashem M. et al. Growth inhibition of Microcystis aeruginosa and adsorption of microcystin toxin by the yeast Aureobasidium pullulans, with no effect on microalgae. Environm. Sci. Pollut. Res. 2020. V. 27 (30). P. 38038–38046.
  18. Mohamed Z.A., Hashem M., Alamri S.A. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon. 2014. V. 86. P. 51–58.
  19. Mohamed Z.A., Hashem M., Alamri S. et al. Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs. Environm. Sci. Pollut. Res. 2021. V. 28. P. 37041–37050. https://doi.org/10.1007/s11356-021-14623-w
  20. Samson R.A., Reenen-Hoekstra E.S. Introduction to food-borne fungi. 3rd ed. CBS, Baarn, 1988.
  21. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis etc. (eds). PCR Protocols: a guide to methods and applications. 1990. Academic Press, N.Y., 315–322.
  22. Zaytseva T.B., Safronova V.I., Medvedeva N.G. Streptomyces geldanamycininus Z374 – a novel strain with biocidal activity against cyanobacteria. Theor. Appl. Ecology. 2022. P. 159–166. https://doi.org/10.25750/1995-4301-2022-1-159-166
  23. Zeng G., Gao P., Wang J. et al. Algicidal molecular mechanism and toxicological degradation of Microcystis aeruginosa by white-rot. Toxins. 2020. V. 12 (6). P. 406.
  24. Zhang Y., Xie H.F. Study on the biodegradation of microcystin-LR by white-rot fungus S. commune. Environmental Pollution and Control. 2012. V. 34. P. 56–60.
  25. Zurawell R.W., Chen H., Burke J.M. et al. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health, Part B: Critical Reviews. 2005. V. 8. P. 1–37. https://doi.org/10.1080/10937400590889412
  26. Методика определения токсичности воды и водных вытяжек из почв, осадков сточных вод, отходов по смертности и изменению плодовитости дафний (Methodology). ФР.1.39.2007.03222. Москва: Акварос, 2007.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (55KB)

Copyright (c) 2023 Н.Г. Медведева, И.Л. Кузикова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies