Antagonistic Strains of Pantoea brenneri as Plant Protectors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The antagonistic activity of Pantoea brenneri strains against a wide range of phytopathogenic threats was studied. It has been established that the strains are characterized by fungicidal activity against the micromycetes Fusarium sambucinum, F. oxysporum, F. solani, Rhizoctonia solani, Alternaria sp., Ascochyta kamchatica, Colletotrichum coccodes as well as antibacterial activity against the phytopathogen Erwinia amylovora, which causes bacterial burn of fruit trees. It has been shown that the cell suspension and supernatant of the culture liquid of Pantoea brenneri strains suppress Fusarium on potato tubers during storage. Pantoea brenneri strains have been found to be safe for model animals. A conclusion was made about the prospects of using P. brenneri strains as objects for the creation of environmentally friendly plant protection products against phytopathogens.

About the authors

D. S. Bulmakova

Kazan Federal University

Author for correspondence.
Email: daria_bulmakova@mail.ru
Russia, Kazan

G. I. Shagieva

Kazan Federal University

Author for correspondence.
Email: gulsatsagieva2@gmail.com
Russia, Kazan

D. L. Itkinaa

Kazan Federal University

Author for correspondence.
Email: laia9301@mail.ru
Russia, Kazan

O. A. Leninа

Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: leninaox@mail.ru
Russia, Kazan

M. R. Sharipova

Kazan Federal University

Author for correspondence.
Email: marsharipova@gmail.com
Russia, Kazan

A. D. Suleimanova

Kazan Federal University

Author for correspondence.
Email: aliya.kzn@gmail.com
Russia, Kazan

References

  1. Barbetti M.J., Khan T.N., Pritchard I. et al. Challenges with managing disease complexes during application of different measures against foliar diseases of field pea. Plant Dis. 2021. V. 105. P. 616–627. https://doi.org/10.1094/PDIS-07-20-1470-RE
  2. Chernyavskaya M.I., Sidorenko A.V., Golenchenko S.G. et al. Ecological microbiology: textbook.-method. allowance. Izdatelstvo BGU, Minsk, 2016. (in Russ.)
  3. Dubrovsky J.G., Guttenberger M., Saralegui A. et al. Neutral red as a probe for confocal laser scanning microscopy studies of plant roots. Ann. Bot. 2006. V. 97. P. 1127–1138. https://doi.org/10.1093/aob/mcl045
  4. Egorov N.S. Fundamentals of the doctrine of antibiotics. Nauka, Moscow, 2004 (in Russ.).
  5. Etesami H., Jeong B.R., Glick B.R. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to p uptake by plant. Front. Plant Sci. 2021. V. 12. Art. 699618. https://doi.org/10.3389/fpls.2021.699618
  6. Evans H.M., Schulemann W. The action of vital stains belonging to the benzidine group. Science. 1914. V. 39. P. 443–454. https://doi.org/10.1126/science.39.1004.443
  7. Förster H., McGhee G.C., Sundin G.W. et al. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology. 2015. V. 105. P. 1302–1310. https://doi.org/10.1094/PHYTO-03-15-0078-R
  8. Itkina D.L., Suleimanova A.D., Sharipova M.R. Pantoea brenneri AS3 and Bacillus ginsengihumi M2.11 as potential biocontrol and plant growth-promoting agents. Mikrobiologiya. 2021. V. 90. P. 204–214 (in Russ.). https://doi.org/10.31857/S0026365621020063
  9. Jiang L., Jeong J.C., Lee J.S. et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci. Rep. 2019. V. 9. Art. 16354. https://doi.org/10.1038/s41598-019-52804-3
  10. Johnson K.B. Effect of antagonistic bacteria on establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control. Phytopathology. 1993. V. 83. P. 995–1002.
  11. Khan A., Singh P., Srivastava A. Synthesis, nature and utility of universal iron chelator – siderophore: a review. Microbiol. Res. 2018. V. 212. P. 103–111. https://doi.org/10.1016/j.micres.2017.10.012
  12. Lahlali T., Berke J. M., Vergauwen K. et al. Novel potent capsid assembly modulators regulate multiple steps of the hepatitis B virus life cycle. Agents Chemother. 2018. V. 62. P. 672–615. https://doi.org/10.1128/AAC.00835-18
  13. Lastochkina O., Pusenkova L., Garshina D. et al. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with Fusarium dry rot. Plants. 2020. V. 9. Art. 738. https://doi.org/10.3390/plants9060738
  14. Li D., Li S., Wei S. et al. Strategies to manage rice sheath blight: lessons from interactions between rice and Rhizoctonia solani. Rice (NY). 2021. V. 14. Art. 21. https://doi.org/10.1186/s12284-021-00466-z
  15. Mejdoub-Trabelsi B., Aydi Ben Abdallah R., Ammar N. et al. Antifungal potential of extracellular metabolites from Penicillium spp. and Aspergillus spp. naturally associated to potato against Fusarium species causing tuber dry rot. J. Microb. Biochem. Technol. 2017. V. 9. P. 181–190. https://doi.org/10.4172/1948-5948.1000364
  16. Mikiciński A., Puławska J., Molzhigitova A. et al. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 2020. V. 156. P. 257–272. https://doi.org/10.1007/s10658-019-01885-x
  17. Netrusov F.I. Workshop on microbiology. Moscow, 2005 (in Russ.).
  18. Ordax M., Piquer-Salcedo J.E., Santander R.D. et al. Medfly Ceratitis capitata as potential vector for fire blight pathogen Erwinia amylovora : survival and transmission. PLOS One. 2015. V. 10. Art. e0127560. https://doi.org/10.1371/journal.pone.0127560
  19. Rochlani A., Dalwani A., Shaikh N.B. et al. Plant growth promoting rhizobacteria as biofertilizers: application in agricultural sustainability. Acta Scientific Microbiology. 2022. V. 5. P. 12–21. https://doi.org/10.1016/B978-0-12-815879-1.00003-3
  20. Santoyo G., Guzman-Guzman P., Parra-Cota F.I. et al. Plant growth stimulation by microbial consortia. Agronomy. 2021. V. 11. Art. 219. https://doi.org/10.3390/agronomy11020219
  21. Sellem I., Triki M.A., Elleuch L. et al. The use of newly isolated Streptomyces strain TN258 as potential biocontrol agent of potato tubers leak caused by Pythium ultimum. J. Basic Microbiol. 2017. V. 57 (5). P. 393–401. https://doi.org/10.1002/jobm.201600604
  22. Smith D.D.N., Nickzad A., Stavrinides J. A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. ASM J. 2016. V. 1. Art. e00075–15. https://doi.org/10.1128/mSphere.00075-15
  23. Suleimanova A.D., Beinhauer A., Valeeva L. R. et al. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1. Appl. Environ. Microbiol. 2015. V. 81. P. 6790–6799. https://doi.org/10.1128/AEM.01384-15
  24. Suleimanova A.D., Itkina D.L., Pudova D.S. et al. Identification of Pantoea phytate-hydrolyzing rhizobacteria based on their phenotypic features and multilocus sequence analysis (MLSA). Mikrobiologiya. 2021. V. 90. P. 100–109 (in Russ.). https://doi.org/10.31857/S0026365621010122
  25. Tan Y.N., Li Q. Microbial production of rhamnolipids using sugars as carbon sources. Microb. Cell Fact. 2018. V. 17. P. 89–92. https://doi.org/10.1186/s12934-018-0938-3
  26. Titova Yu.A., Krasnobaeva I.L. Multiconversion biopreparations for plant protection and the possibility of their use in organic farming. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva. 2019. V. 2. P. 164–183 (in Russ.).
  27. Town J., Audy P., Boyetchko S.M. et al. High-quality draf genome sequence of biocontrol strain Pantoea sp. Oxwo6b1. Genome Announc. 2016. V. 4. Art. e00582-16. https://doi.org/10.1128/genomeA.00582-16
  28. Walterson A.M., Smith D.D.N., Stavrinides J. Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS One. 2014. V. 9. Art. e96208. https://doi.org/10.1371/journal.pone.0096208
  29. Zhang Y., Sun W., Ning P. et al. First report of anthracnose of papaya (Carica papaya L.) caused by Colletotrichum siamense in China. Plant Dis. 2021. V. 105. Art. 2252. https://doi.org/10.1094/PDIS-10-20-2154-PDN

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (1MB)
4.

Download (1013KB)

Copyright (c) 2023 Д.С. Бульмакова, Г.И. Шагиева, Д.Л. Иткина, О.А. Ленина, М.Р. Шарипова, А.Д. Сулейманова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies