The Peculiarities of the Mycobiota Formation on the Saint Petersburg Stone Monuments Based on Metagenomics and Cultural Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fungi play an important role in colonization and biodeterioration of stone monuments in the open air. This study significantly complements the data on fungal diversity in lithobiotic communities through the use of metagenomic analysis. It was shown that the mycobiota of tombstones in the historical center of St. Petersburg has a complex structure. There are different complexes of species, which have various origins and ways of getting to the monuments. The complex of dominant fungi in SABs on marble and granite in St. Petersburg is formed by dark-colored micromycetes. At the species level, the absolute dominant in all samples was the Knufia karalitana according to metagenomic data and Aureobasidium pullulans according to cultural data. The use of two methodological approaches indicates the expediency of combining culture-based and molecular genetics methods, which make it possible to obtain the most more complete picture of the formation of lithobiotic communities. The season and the type of biofilm have a key importance for the abundance and diversity of micromycetes on stone surface. It was shown that type of rock has a minimal importance for the fungal diversity on stone monument.

About the authors

K. V. Sazanova

Komarov Botanical Institute of the Russian Academy of Sciences; St. Petersburg State University; Archive of the Russian Academy of Sciences, St. Petersburg Branch

Email: ksazanova@binran.ru
Russia, 197022, St. Petersburg; Russia, 199034, St. Petersburg; Russia, 196084, St. Petersburg

M. S. Zelenskaya

St. Petersburg State University

Email: marsz@yandex.ru
Russia, 199034, St. Petersburg

O. A. Pavlova

Beagle LTD Company

Email: kmitry.vlasov@mail.ru
Russia, 192289, St. Petersburg

D. Yu. Vlasov

Komarov Botanical Institute of the Russian Academy of Sciences; St. Petersburg State University

Author for correspondence.
Email: beagle07@bk.ru
Russia, 197022, St. Petersburg; Russia, 199034, St. Petersburg

References

  1. Burford E., Kierans M., Gadd M. Geomycology: fungi in mineral substrata. Mycologist. 2003. V. 17. P. 98–07. https://doi.org/10.1017/S0269-915X(03)00311-2
  2. Cappitelli F., Principi P., Pedrazzani R. et al. Bacterial and fungal deterioration of the Milan cathedral marble treated with protective synthetic resins. Sci. Total Environ. 2007. V. 385. P. 172–181. https://doi.org/10.1016/j.scitotenv.2007.06.022
  3. Dakal T.C., Arora P.K. Evaluation of potential of molecular and physical techniques in studying biodeterioration. Rev. Environ. Sci. BioTechnol. 2012. V. 11. P. 71–104. https://doi.org/10.1007/s11157-012-9264-0
  4. De Leo F., Antonelli F., Pietrini A.M. et al. Study of the euendolithic activity of black meristematic fungi isolated from a marble statue in the Quirinale Palace’s Gardens in Rome, Italy. Facies. 2019. V. 65. https://doi.org/10.1007/s10347-019-0564-5
  5. De Leo F., Marchetta A., Urzì C. Black fungi on stone-built heritage: Current knowledge and future outlook. Appl. Sci. 2022. V. 12. (3969). https://doi.org/10.3390/app12083969
  6. De Leo F., Urzi C. Microfungi from deteriorated materials of cultural heritage. In: Fungi from different substrates. Misra J.K. et al. (eds). CRC Press, Taylor and Francis group, N.Y., 2015, pp. 144–158.
  7. Farooq M., Hassan M., Hassan M. et al. Mycobial deterioration of stone monuments of Dhamarajika, Taxila. J. Microbiol. Experimentation. 2015. V. 2 (1). P. 29–33. https://doi.org/10.15406/jmen.2015.02.00036
  8. Fungal sequencing and classification with the ITS metagenomics protocol. 2018. https://www.illumina.com/content/dam/illumina-marketing/documents/products/ appnotes/its metagenomics-app-note-1270-2018-001-web.pdf.
  9. Fungal metagenomic sequencing. demonstrated protocol. 2019. https://support.illumina.com/content/dam/illuminasupport/documents/documentation/chemistry_ documentation/metagenomic/fungal-metagenomic-demonstrated-protocol-1000000064940-01.pdf.
  10. González J.M., Sáiz-Jiménez C. Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments and artworks. Int. Microbiol. 2005. V. 8. P. 189–194.
  11. Gorbushina A. Life on the rocks. Environ. Microbiol. 2007. V. 9. P. 1613–1631. https://doi.org/10.1111/j.1462-2920.2007.01301.x.
  12. Gorbushina A.A., Vlasov D.Yu., Lyalikova N.N. et al. Microbial communities on the monuments of Moscow and St. Petersburg: Biodiversity and trophic relations. Microbiology. 2002. V. 71 (3). P. 350–356.
  13. Isola D., Bartoli F., Meloni P. et al. Black fungi and stone heritage conservation: ecological and metabolic assays for evaluating colonization potential and responses to traditional biocides. Appl. Sci. 2022. V. 12 (2038). https://doi.org/10.3390/app12042038
  14. Isola D., Zucconi L., Onofri G.S. et al. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Diversity. 2016. V. 76. P. 75–96. https://doi.org/10.1007/s13225-015-0342-9
  15. Kirtsideli I.Yu., Kazanova A.V., Lazarev P.A. et al. Development of rock-inhabiting microfungi on artificial (synthetic) marble sculptures in the Summer Garden (St. Petersburg). In: Biogenic-abiogenic interactions in natural and anthropogenic systems / O.V. Frank-Kamenetskaya etc. (eds). Springer, N.Y. etc., 2016, pp. 393–401.
  16. Kurakov A.V., Somova N.G., Ivanovskii R.N. Micromycetes populating limestone and red brick surfaces of the Novodevichii convent masonry. Microbiology. 1999. V. 68 (2). P. 273–282 (in Russ.).
  17. Liu X., Koestler R.J., Warscheid T. Microbial deterioration and sustainable conservation of stone monuments and buildings. Nat. Sustain. 2020. V. 3. P. 991–1004. https://doi.org/10.1038/s41893-020-00602-5
  18. Mang S.M., Scrano L., Camele I. Preliminary studies on fungal contamination of two rupestrian churches from Matera (Southern Italy). Sustainability. 2020. V. 12 (6988). https://doi.org/10.3390/su12176988
  19. Mihajlovski A., Seyer D., Benamara H. et al. An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann. Microbiol. 2015. V. 65. 1243–1255. https://doi.org/10.1007/s13213-014-0956-2
  20. Onofri S., Zucconi L., Isola D. et al. Rock-inhabiting fungi and their role in the deterioration of stone monuments in the Mediterranean area. Plant Biosyst. 2014. V. 148 (2). P. 384–391. https://doi.org/10.1080/11263504.2013.877533
  21. Ortega-Morales B.O., Narváez-Zapata J., Reyes-Estebanez M. et al. Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front. Microbiol. 2016. V. 7 (201). https://doi.org/10.3389/fmicb.2016.00201
  22. Paiva D.S., Fernandes L., Trovão J. et al. Uncovering the fungal diversity colonizing limestone walls of a forgotten monument in the central region of Portugal by high-throughput sequencing and culture-based methods. Appl. Sci. 2022. V. 12. P. 10650. https://doi.org/10.3390/app122010650
  23. Salvadori O., Municchia A.C. The role of fungi and lichens in the biodeterioration of stone monuments. The Open Conference Proceeding Journal. 2015. N 6 (Suppl 1: M 4). P. 70–82. https://doi.org/10.2174/2210289201607020039
  24. Santo A.P., Cuzman O.A., Petrocchi D. et al. Black on white: microbial growth darkens the external marble of Flo-rence Cathedral. Appl. Sci. 2021. 11. 6163. https://doi.org/10.3390/app11136163
  25. Sazanova K.V., Zelenskaya M.S., Vlasov A.D. et al. Microorganisms in superficial deposits on the stone monuments in St. Petersburg. Microorganisms. 2022. V. 10. P. 316. https://doi.org/10.3390/microorganisms10020316
  26. Sazanova K.V., Zelenskaya M.S., Bobir S.Yu. et al. Micromycetes in biofilms on stone monuments of Saint Petersburg. Mikologiya i fitopatologiya. 2020. V. 54 (5). P. 329–339. https://doi.org/10.31857/S0026364820050104
  27. Suihko M.L., Alakomi H.L., Gorbushina A. et al. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst. Appl. Microbiol. 2007. V. 30. P. 494–508. https://doi.org/10.1016/j.syapm.2007.05.001
  28. Trovãoa J., Portugala A., Soaresa F. et al. Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. International Biodeterioration and Biodegradation. 2019. V. 142. P. 91–102. https://doi.org/10.1016/j.ibiod.2019.05.008
  29. Villa F., Stewart P.S., Klapper I. et al. Subaerial biofilms on outdoor stone monuments: Changing the perspective toward an ecological framework. BioSci. 2016. V. 66. P. 285–294. https://doi.org/10.1093/biosci/biw006.
  30. Vladimirov I.A., Matveva T.V., Lutova L.A. Real-time RCR for agrobacteria distribution study. Galanika, SPb., 2014.
  31. Vlasov D.Yu., Zelenskaya M.S., Frank-Kamenetskaya O.V. Micromycetes on marble monuments of Alexander-Nevskaya lavra Museum necropolises (Saint Petersburg). Mikologiya i fitopatologiya. 2002. V. 36 (3). P. 7–10 (in Russ.).
  32. Wollenzien U., de Hoog G.S., Krumbein W.E. et al. On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci. Total Environ. 1995. № 167. P. 287–294.
  33. Zhang Y., Su M., Wu F. et al. Diversity and composition of culturable microorganisms and their biodeterioration potentials in the Sandstone of Beishiku Temple, China. Microorganisms. 2023. V. 11. P. 429. https://doi.org/10.3390/ microorganisms11020429
  34. Власов Д.Ю., Зеленская М.С., Франк-Каменецкая О.В. (Vlasov et al.) Микромицеты на мраморных памятниках музейных некрополей Александро-Невской Лавры (Санкт-Петербург) // Микология и фитопатология, 2002. Т. 36. № 3. С. 7–10.
  35. Горбушина А.А., Ляликова Н.Н., Власов Д.Ю. и др. (Gorbushina et al.) Микробные сообщества на мраморных памятниках Санкт-Петербурга и Москвы: видовой состав (разнообразие) и трофические взаимодействия // Микробиология. 2002. Т. 71. № 3. С. 409–417.
  36. Кураков А.В., Сомова Н.Г., Ивановский Р.Н. (Kurakov et al.) Микромицеты – обитатели поверхности белокаменных и кирпичных сооружений Новодевичьего монастыря // Микробиология. 1999. Т. 68. № 2. С. 273–282.
  37. Сазанова К.В., Зеленская М.С., Бобир С.Ю. и др. (Sazanova et al.) Микромицеты в биопленках на каменных памятниках Санкт-Петербурга // Микология и фитопатология. 2020. Т. 54. № 5. С. 329–339.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (151KB)
4.

Download (169KB)
5.

Download (486KB)
6.

Download (111KB)
7.

Download (120KB)

Copyright (c) 2023 K.V. Sazanova, M.S. Zelenskaya, O.A. Pavlova, D.Yu. Vlasov

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».