Comparative Analysis of Metabolites of CAD-im Genotypes of Spring Bread Wheat under Brown Rust Infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Determination of the role of specific genes and their products in plant resistance to stress factors, including those of a biotic nature, is an urgent task of phytopathology and provides additional information for practical use. For spring bread wheat Triticum aestivum, CAD-im genotypes (Cinnamyl alcohol dehydrogenase, cinnamyl alcohol dehydrogenase; EC 1.1.1.195) affecting leaf rust (Puccinia triticina) resistance were studied. Resistant and susceptible genotypes were grown on an infectious background and in its absence. Plant tissues were studied for a number of indicators, including the content of phenylpropanoid metabolites, as well as sterols and saponins. Phenylpropanoids show an increase in a number of metabolites due to infection, especially coniferyl acetate and synapic aldehyde. A decrease in the content of some sterols under the influence of infection in the resistant CADim+ ge-notype was found. It is assumed that the acetate-mevalonate pathway of metabolism in the resistant genotype CADim+ changes under the influence of infection from the synthesis of sterols to the synthesis of protective substances, phytoalexins.

About the authors

A. A. Konovalov

Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: konov@bionet.nsc.ru
Russia, Novosibirsk

E. A. Orlova

Siberian Research Institute of Plant Cultivation and Breeding – Branch of Institute of Cytology and Genetics of Siberian Branch
of Russian Academy of Sciences

Author for correspondence.
Email: orlova.lena10@yandex.ru
Russia, Novosibirsk, Krasnoobsk

E. V. Karpova

Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: karpovae@nioch.nsc.ru
Russia, Novosibirsk

I. K. Shundrina

Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: ishund@nioch.nsc.ru
Russia, Novosibirsk

A. A. Nefedov

Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nefyodov@nioch.nsc.ru
Russia, Novosibirsk

N. P. Goncharov

Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: gonch@bionet.nsc.ru
Russia, Novosibirsk

References

  1. Barber M.S., McConnell V.S. et al. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry. 2000. V. 54 (1). P. 53–56. https://doi.org/10.1016/s0031-9422(00)00038-8
  2. Chemical Tissue Indices in the Spring Bread Wheat Triticum aestivum L. Prikladnaya biokhimiya i mikrobiologiya. 2021a. V. 57 (4). P. 402–414 (in Russ.). https://doi.org/10.1134/S0003683821040086
  3. Dadali V.A., Tutelyan V.A. Phytosterins – biological activity and prospects for practical application. Uspekhi sovremennoi biologi. 2007. V. 127 (5). P. 458–470 (in Russ.).
  4. Dyakov Yu.T., Ozeretskovskaya O.L., Javakhia V.G. et al. General and molecular phytopathology. Society of Phytopathologists, Moscow, 2001 (in Russ.).
  5. Efroimson V.P. Immunogenetics. Medicine, Moscow, 1971 (in Russ.).
  6. Frolova T.S., Cherenko V.A., Sinitsyna O.I. et al. Genetic aspects of potato resistance to phytophthorosis. Vavilovskiy zhurnal genetiki i selektsii. 2021. V. 25 (2). P. 164–170 (in Russ.). https://doi.org/10.18699/VJ21.020
  7. Gunnaiah R., Kushalappa A.C., Duggavathi R. et al. Integratedmetabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) Contributes to resistance against Fusarium graminearum. PLOS One 2012. V. 7. P. e40695. https://doi.org/10.1371/journal.pone.0040695
  8. Gupt S.K., Chand R., Mishra V.K. et al. Spot blotch disease of wheat as influenced by foliar trichome and stomata density. J. Agric. Food Res. 2021. V. 6. P. 100227. https://doi.org/10.1016/j.jafr.2021.100227
  9. Hart G.E. Genetic control of NADH dehydrogenase-1 and aromatic alcohol dehydrogenase-2 in hexaploid wheat. Biochem Genet. 1987. V. 25 (11–12). P. 837–846.
  10. Ivanova Yu.N., Rosenfread K.K., Stasyuk A.I. et al. Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilovskiy zhurnal genetiki i selektsii. 2021. V. 25 (7). P. 701–712 (in Russ.). https://doi.org/10.18699/VJ21.080
  11. Jaaska V. NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their relatives. On the origin and phylogeny of polyploid wheats. Theor. Appl. Genet. 1978. V. 53 (3). P. 209–217.
  12. Karpova E.V., Shundrina I.K., Orlova E.A. et al. Aromatic and mineral substances in the tissues of the samples of spring common wheat Triticum aestivum L., differing in resistance to brown rust (pathogen Puccinia triticina Erikss.) Khimiya rastitelnogo syrya. 2019. V. 4. P. 87–95 (in Russ.). https://doi.org/10.14258/jcprm.2019045238
  13. Konovalov A.A., Shundrina I.K., Karpova E.V. Polymorphism of lignification enzymes at plants: functional value and applied aspects. Uspekhi sovremennoy biologii. 2015. V. 135 (5). P. 496–513 (in Russ.).
  14. Konovalov A.A., Shundrina I.K., Karpova E.V. et al. Influence of a lignification and mineralization of leaf tissues on resistance to a brown rust in common wheat plants. Vavilovskiy zhurnal genetiki i selektsii. 2017. V. 21 (6). P. 686–693 (in Russ.). https://doi.org/10.18699/VJ17.286
  15. Konovalov A.A., Orlova E.A., Karpova E.V. et al. Effect of polymorphic variants of CAD (EC 1.1.1.195) on wheat resistance to fungal infections. Gene pool and plant selection. V International Conference. 11–13 November 2020 Reports and communications. Novosibirsk, 2020. P. 147–150 (in Russ.). https://doi.org/10.18699/GPB2020-00
  16. Konovalov A.A., Karpova E.V., Shundrina I.K. et al. Effect of allelic variants of aromatic alcohol dehydrogenase CAD im on micromorphological and chemical parameters of tissues in spring common wheat Triticum aestivum L. Appl. Biochem. Microbiol. 2021a. V. 57 (4). P. 402–414. https://doi.org/10.31857/S0555109921040085
  17. Konovalov A.A., Orlova E.A., Nemtsev B.F. et al. Effect of leaf pubescence and direction of crossbreeding on spring bread wheat resistance to powdery mildew and brown rust. Pisma v Vavilovskiy zhurnal genetiki i selektsii. 2021b. V. 7 (3). 130–137 (in Russ.). https://doi.org/10.18699/LettersVJ2021-7-15
  18. Metlitsky L.V., Ozeretskovskaya O.L., Vasyukova N.I. Phyto-sterins and their role in the relationship of plants with parasitic fungi (using the example of fungi of the Pythiaceae family). Uspekhi sovremennoy biologii. 1980. V. 89 (1). P. 28–41 (in Russ.).
  19. Metlitsky L.V., Ozeretskovskaya O.L. How plants protect themselves from diseases. Nauka, Moscow, 1985 (in Russ.).
  20. Mitchell H.J., Hall J.L., Barber M.S. Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol. 1994. V. 104 (2). P. 551–556.
  21. Morrissey J.P., Osbourn A.E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and molecular biology reviews. 1999. V. 63 (3). P. 708–724.
  22. Mosquera T., Alvarez M.F., Jiménez-Gómez J.M. et al. Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNPs for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLOS One. 2016. V. 11(6). P. e0156254. https://doi.org/10.1371/journal.pone.0156254
  23. Novakovskiy R.O., Povkhova L.V., Krasnov G.S. et al. The cinnamyl alcohol dehydrogenase gene family is involved in the response to Fusarium oxysporum in resistant and susceptible flax genotypes. Vavilovskiy zhurnal genetiki i selektsii. 2019. V. 23 (7). P. 896–901. https://doi.org/10.18699/VJ19.564
  24. Obolenskaya A.V., Shchegolev V.P., Akim G.L. et al. Practical work on the chemistry of wood and cellulose. Lesnaya Promyshlennost, Moscow, 1965 (in Russ.).
  25. Pane C., Caputo M., Francese G. et al. Managing Rhizoctonia damping-off of rocket (Eruca sativa) seedlings by drench application of bioactive potato leaf phytochemical extracts. Biology (Basel). 2020. V. 9 (9). P. 270. https:// doi.org/https://doi.org/10.3390/biology9090270
  26. Pavlovskaya N.E., Solokhina I.Yu., Gneusheva I.A. Study of triterpene saponins obtained from the roots of Aventa sayiva sowing oats. Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta. 2012. № 2. P. 48–50 (in Russ.).
  27. Pillonel C., Hunziker P., Binder A. Multiple forms of the constitutive wheat cinnamyl alcohol dehydrogenase. J. Exp. Bot. 1992. V. 43 (248). P. 299–305.
  28. Rong W., Luo M., Shan T. et al. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease. Front. Plant. Sci. 2016. V. 7. Arti. 1723. https://doi.org/10.3389/fpls.2016.01723
  29. Rubin B.A., Artsikhovskaya E.V., Aksenova V.A. Biochemistry and physiology of plant immunity. Ed. 3rd, reworked and additional Vysshaya Shkola, Moscow, 1975 (in Russ.).
  30. Sibikeev S.N., Druzhin A.E., Badaeva E.D. et al. Comparative Analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russian Journal of Genetics. 2017. V. 53 (3). P. 314–324 (in Russ.). https://doi.org/10.7868/S0016675817030110
  31. Somssich I.E., Wernert P., Kiedrowski S. et al. Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol:NADP+ oxidoreductase. Proc. Natl Acad. Sci. USA. 1996. V. 93. P. 14199–14203. https://doi.org/10.1073/pnas.93.24.14199
  32. Tarabanko V.E., Tarabanko N.V. Catalytic oxidation of lignins into the aromatic aldehydes: General process trends and development prospects. Int. J. Mol. Sci. 2017. V. 18 (11). P. 2421. https://doi.org/10.3390/ijms18112421
  33. Tronchet M., Balagué C., Kroj T. et al. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molec. Plant Pathol. 2010. V. 11. P. 83–92. https://doi.org/10.1111/J.1364-3703.2009.00578.X
  34. Ube N., Harada D., Katsuyama Y. et al. Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat. Phytochemistry. 2019. V. 167. 112098. https://doi.org/10.1016/j.phytochem.2019.112098
  35. Vasyukova N.I., Davydova N.A., Ozeretskovskaya O.L. et al. The nutrient-inhibiting hypothesis of phytoimmunity on the example of mutual relations between potatoes and the fungus Phytophthora infestans (Mont.) De By. Mikologiya i fitopatologiya. 1977a. V. 11 (6). P. 480–487 (in Russ.).
  36. Vasyukova N.I., Davydova N.A., Shcherbakova L.A. et al. Phytosterins as a factor protecting the pathogen of potato blight from the action of phytoalexins. Doklady Akademii nauk USSR. 1977b. V. 235 (1). P. 216–219 (in Russ.).
  37. Васюкова Н.И., Давыдова Н.А., Озерецковская О.Л. и др. (Vasyukova et al.) Питательно-тормозящая гипотеза фитоиммунитета на примере взаимоотнощений картофеля и гриба Phytophthora infestans (Mont.) de By // Микология и фитопатология. 1977. Т. 11. № 6. С. 480–487.
  38. Васюкова Н.И., Давыдова Н.А., Щербакова Л.А. и др. (Vasyukova et al.) Фитостерины как фактор, предохраняющий возбудитель фитофтороза картофеля от действия фитоалексинов // ДАН СССР. 1977. Т. 235. № 1. С. 216–219.
  39. Дадали В.А., Тутельян В.А. (Dadali, Tutelyan) Фитостерины – биологическая активность и перспективы практического применения // Успехи современной биологии. 2007. Т. 127. № 5. С. 458–470.
  40. Дьяков Ю.Т., Озерецковская O.Л., Джавахия В.Г. и др. (Dyakov et al.) Общая и молекулярная фитопатология. М.: Из-во Общество фитопатологов, 2001. 302 с.
  41. Иванова Ю.Н., Розенфрид К.К., Стасюк А.И. и др. (Ivanova et al.) Получение и характеристика линии мягкой пшеницы (Тулайковская 10 × Саратовская 29) с интрогрессией хромосомы пырея Thinopyrum intermedium 6Agi2 // Вавиловский журнал генетики и селекции. 2021. Т. 25. № 7. С. 701–712.
  42. Карпова Е.В., Шадрина И.К., Орлова Е.А. и др. (Karpova et al.) Ароматические и минеральные вещества в тканях образцов яровой мягкой пшеницы Triticum aestivum L., различающихся по устойчивости к бурой ржавчине (возбудитель Puccinia triticina Erikss.) // Химия растительного сырья. 2019. № 4. С. 87–95.
  43. Коновалов А.А., Шундрина И.К., Карпова Е.В. (Konovalov et al.) Полиморфизм ферментов лигнификации у растений: функциональное значение и прикладные аспекты // Успехи современной биологии. 2015. Т. 135. № 5. С. 496–513.
  44. Коновалов А.А., Шундрина И.К., Карпова Е.В. (Konovalov et al.) Влияние лигнификации и минерализации тканей листа на устойчивость к бурой ржавчине растений мягкой пшеницы // Вавиловский журнал генетики и селекции. 2017. Т. 21. № 6. С. 686–693.
  45. Коновалов А.А., Карпова Е.В., Шундрина И.К. (Konovalov et al.) Влияние аллельных вариантов ароматической алкогольдегидрогеназы CAD im на микроморфологические и химические показатели тканей у яровой мягкой пшеницы Triticum aestivum L. // Прикладная биохимия и микробиология. 2021. Т. 57. № 4. С. 402–414.
  46. Коновалов А.А., Орлова Е.А., Карпова Е.В. и др. (Konovalov et al.) Влияние полиморфных вариантов CAD (EC 1.1.1.195) на устойчивость пшеницы к грибным инфекциям // Генофонд и селекция растений. V международная конференция. 11–13 ноября 2020 г. Доклады и сообщения. Новосибирск: ИЦиГ СО РАН, 2020. С. 147–150.
  47. Коновалов А.А., Орлова Е.А., Немцев Б.Ф. и др. (Konovalov et al.) Влияние опушения листьев и направления скрещиваний на устойчивость яровой мягкой пшеницы к мучнистой росе и бурой ржавчине // Письма в Вавиловский журнал генетики и селекции. 2021. Т. 7. № 3. С. 130–137.
  48. Метлицкий Л.В., Озерецковская О.Л. (Metlitskiy, Oze-retskovskaya) Как растения защищаются от болезней. М.: Наука, 1985. 189 с.
  49. Метлицкий Л.В., Озерецковская О.Л. и др. (Metlitskiy et al.) Фитостерины и их роль во взаимоотношениях растений с паразитарными грибами (на примере грибов семейства Pythiaceae) // Успехи современной биологии. 1980. Т. 89. Вып. 1. С. 28–41.
  50. Методы оценки и отбора исходного материала при создании сортов пшеницы устойчивых к бурой ржавчине: монография (Methods) М.: ООО “РС дизайн”, 2012. 93 с.
  51. Павловская Н.Е., Солохина И.Ю., Гнеушева И.А. (Pavlovskaya et al.) Исследование тритерпеновых сапонинов, полученных из корней овса посевного Aventa sativa // Вестник ОрлГАУ. 2012. № 2. С. 48–50.
  52. Рубин Б.А., Арциховская Е.В., Аксенова В.А. (Rubin et al.) Биохимия и физиология иммунитета растений. Изд. 3-е, перераб. и доп. М.: Высшая школа, 1975. 320 с.
  53. Сибикеев С.Н., Бадаева Е.Д., Гультяева Е.И. и др. (Sibikeev et al.) Сравнительный анализ 6Agi и 6Agi2 хромосом Agropyron intermedium (Host) Beauv у сортов и линий мягкой пшеницы с пшенично-пырейными замещениями // Генетика. 2017. Т. 53. № 3. С. 298–309.
  54. Фролова Т.С., Черенко В.А., Синицына О.И. и др. (Frolova et al.) Генетические аспекты устойчивости картофеля к фитофторозу // Вавиловский журнал генетики и селекции. 2021. Т. 25. № 2. С. 164–170.
  55. Эфроимсон В.П. (Efroimson) Иммуногенетика. М.: Медицина, 1971. 336 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (381KB)
3.

Download (757KB)
4.

Download (638KB)
5.

Download (2MB)
6.

Download (2MB)
7.

Download (452KB)

Copyright (c) 2023 А.А. Коновалов, Е.А. Орлова, Е.В. Карпова, И.К. Шундрина, А.А. Нефедов, Н.П. Гончаров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies