Identification of Green Coffee Contaminated Microfungi of the Genus Aspergillus on the Basis of Polyphasic Approach

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Aspergillus species are widespread in the environment, able to grow at high temperatures and minimal humidity, including in regions with a hot tropical climate. Some species have the potential to produce toxins. This causes the risk of contamination by fungi of the genus Aspergillus and the mycotoxins (MT) produced by them of plant materials and food products, which is possible at any stage of production, transportation and storage. In the volume of coffee imported to the Russian Federation, 85% is accounted for by raw materials (green coffee), for which the risks of mold damage remain at all stages preceding the roasting stage. It is relevant to study the species composition and toxinogenic properties of  Aspergillus spp., which contaminate food raw materials for the production of mass consumption foodstuffs. Contaminated products include coffee, which is one of the basic products of the consumer basket. Reliable data on species identification and toxigenic potential of Aspergillus spp. can be obtained only with an integrated approach based on polyphasic taxonomy. The purpose of this work is to study the species composition of fungi of the genus Aspergillus isolated from green coffee using an integrated approach based on polyphasic taxonomy. The species composition of fungi of the genus Aspergillus from the internal mycoflora of 16 samples of green coffee beans of  Arabica and Robusta. The species belonging of the isolated 34 singlspore isolates of Aspergillus spp. was determined by cultural and morphological methods and confirmed by molecular genetic analysis, i.e., RT-PCR with DNA markers of conservative sequences (ITS, CaM, β-tub), studied in vitro profile of produced secondary toxic metabolites. The dominance of species of the Niger section was established (A. niger, 90%, and  A. tubingensis, A. carbonarius); then, in decreasing order, the species of section Flavi followed (A. flavus, 100%), sections Circumdati (A. ochraceus, 40% and A. westerdijkiae, 60%). In section Fumigati there was one strain of A. fumigatus. Analysis of the profile of toxic metabolites by HPLC-MS/MS in the multi-detection mode showed the production of mycotoxins by the following species: A. niger – fumonisin B2 and ochratoxin A, A. flavus – aflatoxins B1 and B2 together with sterigmatocystin, A. westerdijkiae – ochratoxin A and penicillic acid, A. ochraceus – penicillic acid. Amounts of produced MT show a high toxinogenic potential of Aspergillus spp. Thus, 20 out of 34 strains produced significant amounts of dangerous, regulated mycotoxins: AFL B1, OTA, FB2. Non-toxinogenic isolates were represented by the species A. niger, A. carbonarius, A. tubingensis, A. flavus, and A. fumigatus. A study of the species composition and toxinogenic properties of green coffee contaminants of the genus Aspergillus using a polyphasic approach was carried out in Russia for the first time.

Sobre autores

L. Minaeva

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Autor responsável pela correspondência
Email: liuminaeva-ion@mail.ru
Russia, 109240, Moscow

Yu. Markova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Autor responsável pela correspondência
Email: yulia.markova.ion@gmail.com
Russia, 109240, Moscow

A. Evsyukova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Autor responsável pela correspondência
Email: st.shtolz@gmail.com
Russia, 109240, Moscow

I. Sedova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Autor responsável pela correspondência
Email: isedova1977@mail.ru
Russia, 109240, Moscow

Z. Chalyy

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Autor responsável pela correspondência
Email: tokka66@bk.ru
Russia, 109240, Moscow

Bibliografia

  1. Al-Shuhaib M.B.S., Albakri A.H., Alwan S.H. et al. Optimal pcr primers for rapid and accurate detection of Aspergillus flavus isolates. Microb Pathog. 2018. V. 116. P. 351–335. https://doi.org/10.1016/j.micpath.2018.01.049
  2. Commission Regulation (EC) No 1881/2006. Commission Directive 2006/1881/EC of 19 December 2006, setting maximum levels for certain contaminants in food stuffs. Off. J. Eur. Commun. 2006. L364. P. 5–24.
  3. El Sheikha A.F. Molecular detection of mycotoxigenic fungi in foods: The case for using PCR-DGGE. Food Biotechnol. 2019. V. 33 (1). P. 54–108. https://doi.org/10.1080/08905436.2018.1547644
  4. Frisvad J.C., Frank J.M., Houbraken J.A.M.P. et al. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004. 50. P. 23–43.
  5. Frisvad J.C., Hubka V., Ezekiel C.N. et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019. V. 93. P. 1–63. https://doi.org/10.1016/j.simyco.2018.06.001
  6. Frisvad J.C., Larsen T.O., Thrane U. et al. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLOS One. 2011. V. 6 (8). P. e23496. https://doi.org/10.1371/journal.pone.0023496
  7. Gagkaeva T.Yu., Gavrilova O.P., Levitin M.M. et al. Fusarium head blight. Zashchita i karantin rasteniy. Supplement. 2011. N 5. P. 69–120 (in Russ.).
  8. Godet M., Munaut F. Molecular strategy for identification in section Flavi. FEMS Microbiol. Letters. 2010. V. 304 (2). P. 157–168. https://doi.org/10.1111/j.1574-6968.2009.01890.x
  9. González-Salgado A., González-Jaén T., Vázquez C. et al. Highly sensitive PCR-based detection method specific for Aspergillus flavus in wheat flour. Food Additives and Contaminants. 2008. V. 25 (6). P 758–764. https://doi.org/10.1080/02652030701765715
  10. Grube M., Gaya E., Kauserud H. et al. The next generation fungal diversity researcher. Fungal Biology Reviews. 2017. 31. P. 124–130. https://doi.org/10.1016/j.fbr.2017.02.001
  11. Han X., Jiang H., Xu J. et al. Dynamic fumonisin B2 production by Aspergillus niger intented used in food industry in China. Toxins. 2017. V. 9 (7). P. 217. https://doi.org/10.3390/toxins9070217
  12. Han X., Jiang H., Li F. Dynamic ochratoxin A production by strains of Aspergillus niger intended used in food industry of China. Toxins. 2019. V. 11 (2). P. 122. https://doi.org/10.3390/toxins11020122
  13. Inderbitzin P., Robbertse B., Schoch C.L. Species identification in plantassociated prokaryotes and fungi using DNA. Phytobiomes Journal. 2020. V. 4. P. 103–114. https://doi.org/10.1094/PBIOMES-12-19-0067-RVW
  14. Ipatova A.A. Overview of the Russian coffee market in 2017–2019. Russian food market. 2020. № 1 (in Russ.).
  15. Jens C., Frisvad J., Frank M. et al. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004. V. 50. P. 23–43.
  16. Jurjevic Z., Peterson S.W., Horn B.W. Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012. V. 3 (1). P. 59–79. https://doi.org/10.5598/imafungus.2012.03.01.07
  17. Liardon R., Braendlin N., Spadone J.C. Biogenesis of Rio flavour impact compound: 2,4,6-trichloroanisole. In: Proc. 14th Int. Conf. Coffee Sci., San Francisco, 14–19 July 1991. Paris, Assoc. Sci. Int. Café, 1992, pp. 608–614.
  18. Minaeva L.P., Polyanina A.S., Kiseleva M.G. et al. Dried fruits marketed in Russian: toxigenic mold contamination. Gigiena i sanitariya. 2021. V. 100 (7). P. 717–723 (in Russ.). https://doi.org/10.47470/0016-9900-2021-100-7-717-723
  19. Noonim P., Mahakarnchanakul W., Nielsen K.F. et al. Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. Int. J. Food Microbiol. 2008. V. 128 (2). P. 197–202. https://doi.org/10.1016/j.ijfoodmicro.2008.08.005
  20. Palumbo J.D., O’Keeffe T.L. Detection and discrimination of four Aspergillus section Nigri species by PCR. Letters Appl. Microbiol. 2015. V. 60. (2). P. 188–195. https://doi.org/10.1111/lam.12358
  21. Perrone G., Susca A., Cozzi G. et al. Biodiversity of Aspergillus species in some important agricultural products. Stud. Mycol. 2007. 59. P. 53–66. https://doi.org/10.3114/sim.2007.59.07
  22. Pitt J.I., Hocking A.D. Fungi and food spoilage. 3rd Edition, Springer Dordrecht, Heidelberg, etc., 2009. https://doi.org/10.1007/978-0-387-92207-2
  23. Samson R.A., Houbraken A.M.P., Kuijpers A.F.A. et al. New ochratoxin or sclerotium producing species in Aspergillus section Nigri. Stud. Mycol. 2004. V. 50 (1). P. 45–61.
  24. Samson R.A., Noonim P., Meijer M. et al. Diagnostic tools to identify black aspergilli. Stud. Mycol. 2007. V. 59. P. 129–145. https://doi.org/10.3114/sim.2007.59.13
  25. Samson R.A., Visagie C.M., Houbraken J. et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014. V. 78. P. 141–173. https://doi.org/10.1016/j.simyco.2014.07.004
  26. Sardiñas N., Vázquez C., Gil-Serna J. et al. Specific detection and quantification of Aspergillus flavus and Aspergillus parasiticus in wheat flour by SYBR® Green quantitative PCR. Int. J. Food Microbiol. 2011. V. 145 (1). P. 121–125. https://doi.org/10.1016/j.ijfoodmicro.2010.11.041
  27. Sedova I.B., Chalyy Z.A., Efimochkina N.R. et al. Mycotoxin contamination of fresh berries and fruits marketed in the central region of Russia. Health Risk Analysis. 2022. V. 4. P. 87–99. https://doi.org/10.21668/health.risk/2022.4.08.eng
  28. Serrano R., Gusmão, L., Amorim A. et al. Rapid identification of Aspergillus fumigatus within the section Fumigati. BMC Microbiol. 2011. V. 11. Art. 82. https://doi.org/10.1186/1471-2180-11-82
  29. Taniwaki M.H., Pitt J.I., Copetti M.V. et al. Understanding mycotoxin contamination across the food chain in Brazil: Challenges and opportunities. Toxins. 2019. V. 11 (7). P. 411. https://doi.org/10.3390/toxins11070411
  30. Visagie C.M., Varga J., Houbraken J. et al. Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud. Mycol. 2014. V. 78. P. 1–61. https://doi.org/10.1016/j.simyco.2014.07.001
  31. White T.J., Bruns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis etc. (eds). PCR protocols: a guide to methods and applications. N.Y., Academic Press Inc., 1990, pp. 315–322.
  32. Yu Ji., Nierman W.C., Fedorova N.D. et al. What can the Aspergillus flavus genome offer to mycotoxin research? Mycology. 2011. V. 2 (3). P. 218–236. https://doi.org/10.1080/21501203.2011.605180
  33. Гагкаева Т.Ю., Гаврилова О.П., Левитин М.М. и др. (Gagkaeva et al.) Фузариоз зерновых культур // Приложение к журналу “Защита и карантин растений”. 2011. № 5. С. 69–120.
  34. Ипатова А.А. (Ipatova) Обзор российского рынка кофе в 2017–2019 году // Российский продовольственный рынок. 2020. № 1.
  35. Минаева Л.П., Полянина А.С., Киселева М.Г. и др. (Minaeva et al.) Изучение контаминации сухофруктов токсигенными плесневыми грибами // Гигиена и санитария. 2021. Т. 100. № 7. С. 717–723.
  36. Чалый З.А., Киселева М.Г., Седова И.Б. и др. (Chalyy et al.) Изучение контаминации сухофруктов микотоксинами // Вопросы питания. 2021. Т. 90. № 1. С. 33–39.

Declaração de direitos autorais © Л.П. Минаева, Ю.М. Маркова, А.Д. Евсюкова, И.Б. Седова, З.А. Чалый, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies