Phytochrome-Dependent Regulation of Melon Resistance to Fusarium Wilt

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of pre-sowing seed treatment with light in the red spectral region on the resistance of melon plants (Cucumis melo) of the cultivar Kichkintoy to Fusarium wilt damage caused by Fusarium oxysporum f. sp. melonis was investigated. The directly-opposite effects of red and far red light on the degree of plant damage by the pathogen, which was determined by the special symptoms of the disease on the leaves and stems of plants, were revealed. When alternating seed treatment with red and far red light, the final effect was determined by the type of irradiation that acted last. The results of photobiological testing made it possible to establish the participation of the phytochrome system in the control of the resistance of melon plants of the cv. Kichkintoy to Fusarium wilt. It is shown that there is a high positive correlation between the parameters of chlorophyll fluorescence induction of leaves reflecting the functional activity of the photosynthetic apparatus and the degree of damage to plants grown from non-irradiated seeds and seeds irradiated with red light. The results of the conducted studies establish the possibility of effective regulation of the resistance of the melon cv. Kichkintoy to the defeat of  F. oxysporum f. sp. melonis through photoactivation of the phytochrome system of seeds before sowing.

Sobre autores

I. Akhmedzhanov

Institute of Biophysics and Biochemistry at the National University of Uzbekistan

Email: iskakhm@mail.ru
Uzbekistan, 100047, Tashkent

M. Khotamov

Institute of Genetics and Plant Experimental Biology of the Uzbek Academy of Sciences

Email: mansurhatamov@mail.ru
Uzbekistan, 111208, Kibray

F. Ganiev

Scientific Research Institute of Vegetable, Melon and Potato growing, Ministry of Agriculture of the Republic of Uzbekistan

Email: sabpkiti@qsxv.uz
Uzbekistan, 111106, Tashkent

E. Lyan

Scientific Research Institute of Vegetable, Melon and Potato growing, Ministry of Agriculture of the Republic of Uzbekistan

Autor responsável pela correspondência
Email: mansurhatamov@mail.ru
Uzbekistan, 111106, Tashkent

Bibliografia

  1. Abramchik L.M., Domanskaya I.N., Makarov V.N. et al. Effect of immunity inducers on the structural and functional state of the photosynthetic apparatus and the oxidative status of cucumber plants (Cucumis sativus L.) infected with Fusarium oxysporum. Trudy Nastionalnoy Akademii nauk Respubliki Belarus. Seriya Biologicheskie nauki. 2019. V. 64 (2). P. 43–47 (in Russ.).
  2. Agishev V.S., Khusainov I.A., Zinoviev A.V. et al. Investigation of the spectral and temporal characteristics of the luminescence of higher plants upon excitation by laser radiation with various energy and time parameters. Uzbekskiy Biologicheskiy Zhurnal. 2002. N 5–6. P. 80–83 (in Russ.).
  3. Akhmedzhanov I.G. The regulation of phytoalexins biosynthesis in infected by Verticillium wilt pathogen cotton tissues. Fiziologia rasteniy i genetika. 2014. V. 46 (6). P. 535–540 (in Russ.).
  4. Akhmedzhanov I.G., Agishev V.S., Dzholdasova K.B. et al. The use of a portable fluorimeter to study the effect of water deficit on the characteristics of delayed fluorescence of cotton leaves. Doklady Akademii nauk Uzbekistana. 2013. № 3. P. 58–60 (in Russ.).
  5. Akhmedzhanov I.G., Gussakovsky E.E., Tashmukhamedov B.A. et al. A method for increasing the resistance of cotton to damage by the causative agent of Verticillium wilt. Author. certificate no 1782387 State Committee for Inventions of the USSR, 1992 (in Russ.).
  6. Akinshina N.G., Rashidova D.K., Azizov A.A. Seed encapsulation in chitosan and its derivatives restores levels of chlorophyll and photosynthesis in wilt-affected cotton (Gossypium L., 1753) plants. Selskokhozyaistvennaya biologiya. 2016. V. 51 (5). P. 696–704 (in Russ.).https://doi.org/10.115389/agrobiology.2016.5.696eng
  7. Alekseeva K.L., Smetanina L.G. Biological protection of tomato from Fusarium wilt. Glavniy Agronom. 2019. № 11. P. 62–65 (in Russ.).
  8. Aleynikov A.F., Mineev V.V. Effect of the fungus of Ramularia tulasnei Sacc. on chlorophyll fluorescence in garden strawberry. Sibirskiy vestnik selskokhozyaistvennoy nauki. 2019. 49 (2). P. 94–102 (in Russ.).
  9. Alvarez J.M. Morphological and molecular characterization of melon accessions resistant to Fusarium wilts. Euphytica. 2009. V. 169. P. 69–79.
  10. Avazkhodjaev M.Kh., Zeltzer S.S., Nuritdinova H. et al. Phytoalexins as a factor in Wilt Resistance of Cotton. In: Handbook of phytoalexin metabolism and action. N.Y. etc., 1995, pp. 129–160.
  11. Babar M.A., Saleem M., Hina A. et al. Chlorophyll as biomarker for early disease diagnosis. Laser Physics. 2018. V. 28 (6). P. 158–163.
  12. Banihashem Z., DeZeeuw D.J. The behavior of Fusarium oxysporum f. sp. melonis in the presence and absence of host plants. Phytopathology. 1975. V. 65. P. 1212–1217.
  13. Baysal O., Calskan M. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology. 2008. V. 73 (1/3). P. 25–32.
  14. Butler W.L., Norris K.H., Siegelman H.W. et al. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. USA. 1959. V. 45. P. 1703–1708.
  15. Casal J.J., Sanchez R.A. Phytochromes and seed germination. Seed Science Research. 1998. V.8. P. 317–329.
  16. Chen M., Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 2011. V. 21. P. 664–671. https://doi.org/10.1016/j.tcb.2011.07.002
  17. Cristhian C.C.A., Sandra G.C., Herman R.D. Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agronomy. 2019. V. 9 (5). P. 213–219.
  18. Dospekhov B.A. Field experiment technique (with the basics of statistical processing of research results). Agropromizdat, Moscow, 1985 (in Russ.).
  19. Egel D.S., Martyn R.D. Fusarium wilt of watermelon and other cucurbits. Plant Health Instruct., 2007. https://doi.org/10.1094/PHI-I-2007-0122-01
  20. Elena K., Pappas A.C. Race distribution, vegetative compatibility and pathogenicity of Fusarium oxysporum f. sp. melonis isolates in Greece. J. Phytopathol. 2006. V. 154. P. 250–255.
  21. Galvao V. C., Fankhauser C. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 2015. V. 34. P. 46–53.
  22. Gordon T.R., Okamoto D., Jacobson D.J. Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology. 1989. V. 79. P. 1095–1100.
  23. Horemans S., Van Oncelen H.A., Greef J.A. Phytochrome control mechanisms in leaf expansion of Phaseolus vulgaris cv Limburg. Plant, Cell and Environ. 1984. V. 7 (5). P. 309–315.
  24. Jahanshir A., Dzhalilov F. The effects of fungicides on Fusa-rium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J. Plant Prot. Res. 2010. V. 50 (2). P. 172–178.
  25. Kabashnikova L.F. Photosynthetic apparatus and stress in plants. Nauka, Minska, 2014 (in Russ.).
  26. Koreneva I.V. The influence of electromagnetic radiation on the development and non-specific stability of different genotypes of agricultural crops. Thesis … Cand. Agric. Kharkov, 1996 (in Russ.).
  27. Korneev D.Yu. Information possibilities of the method of inducing fluorescence of chlorophyll. Alterpres, Kiev, 2002 (in Russ.).
  28. Kreslavski V.D., Carpentier R., Klimov V.V. et al. Transduction mechanism of photoreceptor signals in plant cells. J. Photoch. Photobiol. C. Photochem. Reviews. 2009. V. 10. P. 63–80 (in Russ.).
  29. Kreslavsky V.D. Regulation of stress-resistance of the photosynthetic apparatus by inductors of various nature. Diss. … Doct. Biol. Moscow, 2010 (in Russ.).
  30. Kshirsagar A., Reid A.J., McColl S.M. et al. The effect of fungal metabolites on leaves as detected by chlorophyll fluorescence. New Phytol. 2001. V. 151 (2). P. 451–457.
  31. Kurt S., Baran B., Sari N. et al. Physiologic races of Fusarium oxysporum f. sp. melonis in the southeastern Anatolia Region of turkey and varietal reactions to races of the pathogen. Phytoparasitica. 2002. V. 30. P. 395–402.
  32. Kuznetsov E.D., Sechnyak L.K., Kindruk N.A. et al. The role of phytochrome in plants. Agropromizdat, Moscow, 1986 (in Russ.).
  33. Legris M., Çaka Y., Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications. 2019. V. 10. https://doi.org/10.1038/s41467-019-13045-0
  34. Lichtenthaler H.K. The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica. 1992. V. 27 (1–2). P. 45–55.
  35. Maksimov I.V., Veselova S.V., Nuzhnaya T.V. et al. Plant growth-stimulating bacteria in the regulation of plant resistance to stress factors. Physiologia rasteniy. 2015. V. 62 (6). P. 763–775 (in Russ.).
  36. Mandal K., Saravanan R., Maiti S. et al. Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. J. Plant Dis. Prot. 2009. V. 116. (4). P. 164–168.
  37. Martinez-Ferri E., Zumaquero A., Ariza M.T. et al. Nondestructive detection of white root rot disease in avocado root-stocks by leaf chlorophyll fluorescence. Plant Dis. 2016. V. 100. P. 49–58. https://doi.org/10.1094/PDIS-01-15-0062-RE
  38. Martyn R.D. Fusarium wilt of watermelon: 120 years of research. Horticultural Reviews. 2014. V. 42. P. 349–441.
  39. Mathews S. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol. Ecol. 2006. V. 15. P. 3483–3503. https://doi.org/10.1111/j.1365-294X.2006.03051.x
  40. Matsumoto Y. Evaluation of Cucumis ficifolius A. Rich. Accessions for Resistance to Fusarium wilt. Amer. J. Experimental Agriculture. 2012. № 2 (3). P. 470–476.
  41. Matsumoto Y., Ogawara T., Miyagi M. et al. Response of wild Cucumis species to inoculation with Fusarium oxysporum f. sp. melonis race 1,2 y. J. Japan. Soc. Hort. Sci. 2011. V. 80. P. 414–419.
  42. Mavlanova S.A. Physiological and biochemical features of the induced resistance of cotton to sucking insect pests and the causative agent of verticillous wilt. Diss. … Cand. Agric. Tashkent, 2012 (in Russ.).
  43. Miller N.F., Standish J.R., Quesada-Ocampo L.M. Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and pydiflumetofen in vitro and efficacy for Fusarium wilt management in watermelon. Plant Health Progress. 2020. V. 21. P. 13–18. https://doi.org/10.1094/PHP-08-19-0056-RS
  44. Namiki F., Shiomi T., Nishi K. et al. Pathogenic and genetic variation in the Japanese strains of Fusarium oxysporum f. sp. melonis. Phytopathology. 1998. V. 88. P. 804–810.
  45. Novikova I.I. Biological rationale for the creation and use of polyfunctional biological products based on antagonist microbes for phytosanitary optimization of agroecosystems. Diss. … Dr. Biol. St. Petersburg, 2005 (in Russ.).
  46. Okungbowa F.I., Shittu H.O. Fusarium wilts: an overview. Environmental Research Journal. 2012. V. 6 (2). P. 83–101.
  47. Pan R.S., More T.A. Screening of melon (Cucumis melo L.) germplasm for multiple disease resistance. Euphytica. 1996. V. 88. P. 125–128.
  48. Pascual I., Azcona I., Morales F. et al. Photosynthetic response of pepper plants to wilt induced by Verticillium dahliae and soil water deficit. J. Plant Physiol. 2010. V. 167 (9). P. 701–708.
  49. Pavlovskaya N.E., Tukhtaeva G.M., Khoyaev A.S. On the quantitative change in pigments and photochemical activity of cotton chloroplasts under the influence of the fungus Verticillium dahlia. Uzbekskiy Biologicheskiy Zhurnal. 1973. № 2. P. 26–28 (in Russ.).
  50. Petkar A., Ping S.J. Infection courts in watermelon plants leading to seed infestation by Fusarium oxysporum f. sp. niveum. Phytopathology. 2017. V. 107 (7). P. 828–833. https://doi.org/10.1094/PHYTO-12-16-0429-R
  51. Pham V.N., Kathare P.K., Huq E. Phytochromes and phytochrome interacting factors. Plant Physiol. 2018. V. 176. P.1025–1038. https://doi.org/10.1104/pp.17.01384
  52. Pikulenko M.M., Bulychev A.A. Using the parameters of fluorescence and the generation of electric potentials in the membranes of plant cells to assess the state of biological objects. Byulleten Moscovskogo obshestva ispitateley prirody. Seriya Biologiya. 2007. V. 112 (1). P. 80–84 (in Russ.).
  53. Posudin Yu.I., Godlevska O.O., Zaloilo I.A. et al. Application of portable fluorometer for estimation of plant tolerance to abiotic factors. Int. Agrophysics. 2010. V. 24 (4). P. 363–368 (in Russ.).
  54. Ptushenko V.V., Ptushenko O.S., Tikhonov A.N. Induction of chlorophyll fluorescence, chlorophyll content and leaf color characteristics as indicators of the aging of the photosynthetic apparatus in woody plants. Biokhimiya. 2014. V. 79 (3). P. 260–272 (in Russ.).
  55. Quail P.H. Phytochrome signal transduction network photomorphogenesis in plants and bacteria, 3rd edition. Springer, Dordrecht, 2006. P. 335–356.
  56. Quail P.H. Phytochome-interacting factors. In: G.C. Whitelam and K.J. Halliday (eds). Light and plant development. Blackwell Publishing Ltd, Oxford, 2007, pp. 81–105.
  57. Rao V.G., Dhutraj D.N., Navgire K.D. et al. Efficacy of Tricho-derma fortified organic amendments on Fusarium wilt suppression, growth and yield of eggplant. Asian J. Advances in Agricultural Research. 2021. P. 1–16.
  58. Registeri R., Taghavi S.M., Banihashemi Z. Effect of root colonizing bacteria on plant growth and Fusarium wilt in Cucumis melo. J. Agricultural Science and Technology. 2012. V. 14 (5). P. 1121–1131.
  59. Rockwell N.C., Su Y.S., Lagarias J.C. Phytochrome structure and signaling mechanisms. Ann. Rev. Plant Biol. 2006. V. 57. P. 837–858.
  60. Romanov V.A., Galeluka I.B., Sakharan E.V. Portable fluorimeter and features of its application. Sensornaya elektronica i mikroscopicheskiye technologii. 2010. V. 1 (7). P. 146–152 (in Russ.).
  61. Rubin B.A., Voronkov L.A., Perova I.A. et al. Changes in the pigment composition of cotton leaves with Verticillium wilt disease. Biologicheskie Nauki. 1974. № 9. P. 57–63 (in Russ.).
  62. Sineshchekov V.A. Phytochrome A: polymorphism and multifunctionality. Moscow, 2013 (in Russ.).
  63. Szurmant H., White R.A., Hoch J.A. Sensor complexes regulating two-component signal transduction. Curr. Opin. Struct Biol. 2007. V. 17. P. 706–715.
  64. Trionfetti-Nisini P., Colla G., Granati E. et al. Rootstock resistance to Fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Sci. Hortic. 2002. V. 93. P. 281–288.
  65. Veselovsky V.A., Veselova T.V. Luminescence of plants. Theoretical and practical aspects. Moscow, 1990 (in Russ.).
  66. Voronkov L.A., Perova I.A., Shvyreva V.V. The effect of Verticillium wilt infection on the structure and functions of the photosynthetic apparatus of cotton. In: Pathological physiology and plant immunity. Moscow, 1976, pp. 172–188 (in Russ.).
  67. Wu G., Zhao I., Sen R. et al. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiol. 2019. V. 181. P. 789–803. https://doi.org/10.1104/pp.19.00239
  68. Zuniga T.L., Zitter T.A., Gordon T.R. et al. Characterization of pathogenic races of Fusarium oxysporum f. sp. melonis causing Fusarium wilt of melon in New York. Plant Dis. 1997. V. 81. P. 592–596.
  69. Абрамчик Л.М., Доманская И.Н., Макаров В.Н. и др. (Abramchik et al.). Влияние индукторов иммунитета на структурно-функциональное состояние фотосинтетического аппарата и окислительный статус растений огурца (Cucumis sativus l), инфицированных Fusarium oxysporum // Известия НАН Беларуси. Сер. биол. наук. 2019. Т. 64. № 2.
  70. Агишев В.С., Хусаинов И.А., Зиновьев А.В. и др. (Agishev et al.). Исследование спектральных и временных характеристик люминесценции высших растений при возбуждении лазерным излучением с различными энергетическими и временными параметрами // Узб. биол. журн. 2002. № 5–6. С. 80–83.
  71. Акиншина Н.Г., Рашидова Д.К., Азизов А.А. (Аkinshina et al.). Капсулирование семян препаратами хитозана и его производных восстанавливает фотосинтез у растений хлопчатника (Gossypium L., 1753) на фоне вилта // Сельскохозяйственная биология. 2016. Т. 51. № 5. С. 696–704.
  72. Алейников А.Ф., Минеев В.В. (Aleynikov, Mineev). Изменение флуоресценции хлорофилла земляники садовой при воздействии гриба Ramularia tulasnei Sacc. // Сибирский вестник сельскохозяйственной науки. 2019. Т. 49. № 2. С. 94–102.
  73. Алексеева К.Л., Сметанина Л.Г. (Alekseeva, Smetanina). Биологическая защита томата от фузариозного увядания // Главный агроном. 2019. № 11. С. 62–65.
  74. Ахмеджанов И.Г. (Akhmedzhanov). Регуляция биосинтеза фитоалексинов в инфицированных возбудителем вертициллезного вилта тканях хлопчатника // Физиология растений и генетика (Киев). 2014. Т. 46. № 6. С. 535–540.
  75. Ахмеджанов И.Г., Гуссаковский Е.Е., Ташмухамедов Б.А. и др. (Akhmedzhanov et al.). Способ повышения устойчивости хлопчатника к поражению возбудителем вертициллезного вилта // Автор. свид. № 1782387 Госкомизобретений СССР. 22.10.92 (заявка № 4897312).
  76. Ахмеджанов И.Г., Агишев В.С., Джолдасова К.Б. и др. (Akhmedzhanov et al.). Применение портативного флуориметра для исследования влияния водного дефицита на характеристики замедленной флуоресценции листьев хлопчатника // ДАН РУз. 2013. № 3. С. 58–60.
  77. Веселовский В.А., Веселова Т.В. (Veselovsky, Veselova). Люминесценция растений. Теоретические и практические аспекты. М.: Наука, 1990. 176 с.
  78. Воронков Л.А., Перова И.А., Швырева В.В. (Voronkov et al.). Влияние заражения вертициллезным вилтом на структуру и функции фотосинтетического аппарата хлопчатника // Патологическая физиология и иммунитет растений. МГУ, 1976. С. 172–188.
  79. Доспехов Б.А. (Dospekhov). Методика полевого опыта (с основами статистической обработки результатов исследований). М.: Агропромиздат, 1985. 351 с.
  80. Кабашникова Л. Ф. (Kabashnikova). Фотосинтетический аппарат и стресс у растений. Минск: Беларус. навука, 2014. 267 с.
  81. Коренева И.В. (Koreneva). Влияние электромагнитного излучения на развитие и неспецифическую устойчивость разных генотипов сельскохозяйственных культур. Автореф. дисс. … канд. с.-х. наук. Харьков, 1996. 26 с.
  82. Корнеев Д.Ю. (Korneev). Информационные возможности метода индукции флуоресценции хлорофилла. Киев: Альтерпрес, 2002. 188 с.
  83. Креславский В.Д. (Kreslavsky) Регуляция стресс-устойчивости фотосинтетического аппарата индукторами различной природы. Автореф. дисc. … докт. биол. наук. М., 2010. 40 с.
  84. Кузнецов Е.Д., Сечняк Л.К., Киндрук Н.А. и др. (Kuz-netsov et al.). Роль фитохрома в растениях. М.: Агропромиздат, 1986. 288 с.
  85. Мавланова С.А. (Mavlanova). Физиолого-биохимические особенности индуцированной устойчивости хлопчатника к сосущим насекомым-вредителям и возбудителю вертициллезного вилта. Дисс. … канд. биол. наук. Ташкент, 2012. 132 с.
  86. Максимов И.В., Веселова С.В., Нужная Т.В. и др. (Maksimov et al.). Стимулирующие рост растений бактерии в регуляции устойчивости растений к стрессовым факторам // Физиология растений. 2015. Т. 62. № 6. С. 763–775.
  87. Новикова И.И. (Novikova). Биологическое обоснование создания и применения полифункциональных биопрепаратов на основе микробов-антагонистов для фитосанитарной оптимизации агроэкосистем. Дисc. … докт. биол. наук. СПб., 2005. 755 с.
  88. Павловская Н.Е., Тухтаева Г.М., Ходжаев А.С. (Pavlovskaya, Tukhtaeva, Khojaev). О количественном изменении пигментов и фотохимической активности хлоропластов хлопчатника под влиянием гриба V. Dahliae // Узб. биол. журн. (Ташкент). 1973. № 2. С. 26–28.
  89. Пикуленко М.М., Булычев А.А. (Pikulenko, Bulychev). Использование параметров флуоресценции и генерации электрических потенциалов в мембранах растительных клеток для оценки состояния биологических объектов // Бюлл. Моск. о-ва испыт. природы. Отд. биол. 2007. Т. 112. № 1. С. 80–84.
  90. Птушенко В.В., Птушенко О.С., Тихонов А.Н. (Ptushenko et al.). Индукция флуоресценции хлорофилла, содержание хлорофилла и характеристики цветности листьев как показатели старения фотосинтетического аппарата у древесных растений // Биохимия (Москва). 2014. Т. 79. № 3. С. 260–272.
  91. Рубин Б.А., Воронков Л.А., Перова И.А. и др. (Rubin et al.). Изменение пигментного состава листьев хлопчатника при заболевании вертициллезным вилтом // Биологические науки. 1974. № 9. С. 57–63.
  92. Синещеков В.А. (Sineshchekov). Фитохром A: полиморфизм и многофункциональность. М.: Научный мир, 2013. 162 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (379KB)
3.

Baixar (152KB)
4.

Baixar (58KB)
5.

Baixar (22KB)

Declaração de direitos autorais © I.G. Akhmedzhanov, M.M. Khotamov, F.K. Ganiev, E.E. Lyan, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies