Juvenile Resistance of Barley Cultivars and Accessions to Net-, Spot-, and Hybrid (Net × Spot) Forms of Pyrenophora teres

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Barley net blotch is an economically important disease. The causative agent is an ascomycete, Pyrenophora teres, which exists in two forms: P. teres f. teres (Ptt) and P. teres f. maculata (Ptm), which differ in their symptoms on barley plants. These two forms are easily crossed in laboratory conditions with the formation of fertile offspring, however, it is extremely difficult to prove the hybrid nature of fungal isolates, sometimes found in natural populations of the pathogen and bearing signs of both forms. In 2020, we first identified Ptt × Ptm hybrids in natural populations of P. teres in Krasnodar Region in isolates collected in 2016. The aim of the studies was to compare the virulence of two Ptt isolates, two Ptm isolates of different origin and a hybrid isolate Ptt × Ptm to a wide set of barley genotypes from the VIR collection pre-selected for Ptt resistance, to determine variability of the virulence trait in the hybrid isolate and characterize resistance to both forms of the fungus and hybrid. Depending on the barley genotype, 3 types of disease symptoms were manifested upon inoculation with the Ptt × Ptm hybrid isolate: (1) similar to Ptt, (2) similar to Ptm, and (3) a mixed type. Apparently, the manifestation of symptoms after inoculation with the hybrid isolate depends on the barley genotype influencing the expression of certain pathogen effector genes. It was shown that in most cases Ptm isolates differ in virulence from Ptt isolates to the same barley genotypes, and the Ptt × Ptm hybrid isolate from both Ptt and Ptm. On average, the Ptt × Ptm hybrid isolate was less aggressive than the Ptt and Ptm isolates. A comparison of the types of responses of barley genotypes to all studied isolates of Ptt and Ptm revealed 8.8% of genotypes resistant to both forms of P. teres and 5.6% to Ptt, Ptm and the hybrid isolate Ptt × Ptm. The virulence of natural hybrid between two forms of P. teres Ptt × Ptm was studied for the first time. The barley genotypes resistant to the two forms of the net blotch are valuable source of resistance for barley breeding.

About the authors

N. M. Lashina

All-Russian Institute of Plant Protection

Author for correspondence.
Email: nlashina@mail.ru
Russia, St. Petersburg

N. V. Mironenko

All-Russian Institute of Plant Protection

Author for correspondence.
Email: nina2601mir@mail.ru
Russia, St. Petersburg

A. A. Zubkovich

Practical Centre of Agriculture of Belarus National Academy of Sciences

Author for correspondence.
Email: aa_zoubkovitch@mail.ru
Belarus, Zhodino

O. S. Afanasenko

All-Russian Institute of Plant Protection

Author for correspondence.
Email: olga.s.afan@gmail.com
Russia, St. Petersburg

References

  1. Afanasenko O.S., Jalli M., Pinnschmidt H.O. et al. Development of an international standard set of barley differential genotypes for Pyrenophora teres f. teres. Plant Pathol. 2009. V. 58 (4). P. 665–676. https://doi.org/10.1111/j.1365-3059.2009.02062.x
  2. Akhavan A., Turkington T.K., Kebede B. et al. Genetic structure of Pyrenophora teres f. teres and P. teres f. maculata populations from western Canada. European J. Plant Pathol. 2016. V. 146 (2). P. 325–335. https://doi.org/10.1007/s10658-016-0919-5
  3. Anisimova A.V., Mironenko N.V., Levshtanov S.A. The first find of Pyrenophora teres f. maculata in Krasnodar Territory. Plant Protection News. 2011. V. 3. P. 53–56 (in Russ.).
  4. Atanasoff D., Johnson A.G. Treatment of cereal seeds by dry heat. J. Agric. Res. 1920. V. 18. P. 379–390.
  5. Backes A., Guerriero G., Barka E.A. et al. Pyrenophora teres: Taxonomy, morphology, interaction with barley, and mode of control. Front. Plant Sci. 2021. V. 12. P. 614951. https://doi.org/10.3389/fpls.2021.614951
  6. Burlakoti R.R., Gyawali S., Chao S. et al. Genome-wide association study of spot form of net blotch resistance in the upper Midwest barley breeding programs. Phytopathology. 2017. V. 107 (1). P. 100–108. https://doi.org/10.1094/PHYTO-03-16-0136-R
  7. Campbell G.F., Crous P.W., Lucas J.A. Pyrenophora teres f. maculata, the cause of Pyrenophora leaf spot of barley in South Africa. Mycol. Res. 1999. V. 103 (3). P. 257–267. https://doi.org/10.1017/S0953756298007114
  8. Campbell G.F., Lucas J.A., Crous P.W. Evidence of recombination between net- and spot-type populations of Pyrenophora teres as determined by RAPD analysis. Mycol. Res. 2002. V. 106 (5). P. 602–608. https://doi.org/10.1017/S0953756202005853
  9. Campbell G.F., Crous P.W. Genetic stability of net × spot hybrid progeny of the barley pathogen Pyrenophora teres. Australas. Plant Pathol. 2003. V. 32 (2). P. 283–287. https://doi.org/10.1071/AP03016
  10. Çelik Oğuz A., Karakaya A., Ergün N. et al. Turkish barley landraces resistant to net and spot forms of Pyrenophora teres. Phytopathol. Mediterr. 2017. V. 56 (2). P. 217–223. https://doi.org/10.14601/Phytopathol_Mediterr-19659
  11. Daba S.D., Horsley R., Brueggeman R. et al. Genome-wide association studies and candidate gene identification for leaf scald and net blotch in barley (Hordeum vulgare L.). Plant Dis. 2019. V. 103 (5). P. 880–889. https://doi.org/10.1094/PDIS-07-18-1190-RE
  12. Ellwood S.R., Syme R.A., Moffat C.S. et al. Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Genetics and Biol. 2012. V. 49 (10). P. 825–829. https://doi.org/10.1016/j.fgb.2012.07.003
  13. Fowler R.A., Platz G.J., Bell K.L. et al. Pathogenic variation of Pyrenophora teres f. teres in Australia. Australas. Plant Pathol. 2017. V. 46 (2). P. 115–128. https://doi.org/10.1007/s13313-017-0468-1
  14. Galano T., Bultosa G., Fininsa C. Malt quality of 4 barley (Hordeum vulgare L.) grain varieties grown under low severity of net blotch at Holetta, west Shewa. Ethiopia. African J. Biotechnol. 2011. V. 10 (5). P. 797–806. https://doi.org/10.5897/AJB09.346
  15. Grewal T.S., Rossnagel B.G., Pozniak C.J. et al. Mapping quantitative trait loci associated with barley net blotch resistance. Theor. Appl. Genet. 2008. V. 116 (4). P. 529–539. https://doi.org/10.1007/s00122-007-0688-9
  16. Grewal T.S., Rossnagel B.G., Scoles G. Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a doubled-haploid barley population. Mol. Breed. 2012. V. 30 (1). P. 267–279. https://doi.org/10.1007/s11032-011-9616-4
  17. Gupta S., Loughman R. Current virulence of Pyrenophora teres on barley in Western Australia. Plant Dis. 2001. V. 85 (9). P. 960–966. https://doi.org/10.1094/PDIS.2001.85.9.960
  18. Gyawali S., Amezrou R., Verma R.P.S. et al. Seedling and adult stage resistance to spot form of net blotch (SFNB) in spring barley and stability of adult stage resistance to SFNB in Morocco. Eur. J. Plant Pathol. 2019. V. 153. P. 475–487. https://doi.org/10.1007/s10658-018-1575-8
  19. Jalli M. Sexual reproduction and soil tillage effects on virulence of Pyrenophora teres in Finland. Annls Appl. Biol. 2011. V. 158 (1). P. 95–105. https://doi.org/10.1111/j.1744-7348.2010.00445.x
  20. Jalli M., Robinson J. Stable resistance in barley to Pyrenophora teres f. teres isolates from the Nordic-Baltic region after increase on standard host genotypes. Euphytica. 2000. V. 113 (1). P. 71–77. https://doi.org/10.1023/A:1003912825455
  21. Jayasena K.W., Van Burgel A., Tanaka K. et al. Yield reduction in barley in relation to spot-type net blotch. Australas. Plant Pathol. 2007. V. 36 (5). P. 429–433. https://doi.org/10.1071/AP07046
  22. Koladia V.M., Faris J.D., Richards J.K. et al. Genetic analysis of net-form net blotch resistance in barley lines CIho 5791 and Tifang against a global collection of P. teres f. teres isolates. Theor. Appl. Genet. 2017. V. 130 (1). P. 163–173. https://doi.org/10.1007/s00122-016-2801-4
  23. Lammari H.I., Rehfus A., Stammler G. et al. Occurrence and frequency of spot form and net form of net blotch disease of barley in Algeria. J. Plant Dis. Prot. 2019. V. 127 (10). P. 35–42. https://doi.org/10.1007/s41348-019-00278-w
  24. Lartey R.T., Caesar-TonThat T.C., Caesar A.G. et al. First report of rpot form net blotch caused by Pyrenophora teres f. maculata on Barley in the Mon-Dak Area of the United States. Plant Dis. 2013. V. 97 (1). P. 143. https://doi.org/10.1094/PDIS-07-12-0657-PDN
  25. Lashina N.M., Afanasenko O.S. Susceptibility to leaf blights of commercial barley cultivars inNorth-Western region of Russia. Plant protection news. 2019. V. 2 (100). P. 23–28 (in Russ.). https://doi.org/10.31993/2308-6459-2019-2(100)-23-28
  26. Lehmensiek A., Bester A.E., Sutherland M.W. et al. Population structure of South African and Australian Pyrenophora teres isolates. Plant Pathol. 2010. V. 59 (3). P. 504–515. https://doi.org/10.1111/j.1365-3059.2009.02231.x
  27. Leisova L., Kucera L., Minarikova V. et al. AFLP based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathol. 2005. V. 54 (1). P. 66–73. https://doi.org/10.1111/j.1365-3059.2005.01117.x
  28. Leisova-Svobodova L., Minarikova V., Matusinsky P. et al. Genetic structure of Pyrenophora teres net and spot populations as revealed by microsatellite analysis. Fungal Biol. 2014. V. 118 (2). P. 180–192. https://doi.org/10.1016/j.funbio.2013.11.008
  29. Liu Z., Ellwood S.R., Oliver R.P. et al. Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol. Plant Pathol. 2011. V. 12 (1). P. 1–19. https://doi.org/10.1111/j.1364-3703.2010.00649.x
  30. Liu Z.H., Friesen, T.L. Identification of Pyrenophora teres f. maculata, causal agent of spot type net blotch in North Dakota. Plant Dis. 2010. V. 94 (4). P. 480. https://doi.org/10.1094/PDIS-94-4-0480A
  31. Louw J.P., Crous P.W., Holz G. Relative importance of the barley net blotch pathogens Pyrenophora teres f. teres (net type) and P. teres f. maculata (spot type) in South Africa. Afr. Plant Protect. 1996. V. 2 (2). P. 89–95. https://hdl.handle.net/10520/AJA10233121_225.
  32. Ma Z.Q., Lapitan N.L.V., Steffenson B. QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley. Euphytica. 2004. V. 137 (3). P. 291–296. https://doi.org/10.1023/B:EUPH.0000040441.36990.58
  33. Manninen O., Jalli M., Kalendar R. et al. Mapping of major spot-type and net-type net blotch resistance genes in the Ethiopian barley line CI 9819. Genome. 2006. V. 49 (12). P. 1564–1571. https://doi.org/10.1139/g06-119
  34. Marshall J.M., Kinzer K., Brueggeman R.S. First report of Pyrenophora teres f. maculata the cause of spot form net blotch of barley in Idaho. Plant Dis. 2015. V. 99 (12). P. 1860. https://doi.org/10.1094/PDIS-03-15-0349-PDN
  35. Mathre D.E. (ed.) Compendium of barley diseases, 2nd ed. St. Paul, MN: American Phytopathological Society, 1997. P. 28–31.
  36. McLean M., Weppler R., Howlett B. Spot form of net blotch suppression and yield of barley in response to fungicide application in the Wimmera region of Victoria, Australia. Australas. Plant Pathol. 2016. V. 45 (1). P. 37–43. https://doi.org/10.1007/s13313-015-0387-y
  37. McLean M.S., Howlett B.J., Hollaway G.J. Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop Pasture Sci. 2009. V. 60 (4). P. 303–315. https://doi.org/10.1071/CP08173
  38. McLean M.S., Keiper F.J., Hollaway G.J. Genetic and pathogenic diversity in Pyrenophora teres f. maculata in barley crops of Victoria, Australia. Australas. Plant Pathol. 2010a. V. 39 (4). P. 319–325. https://doi.org/10.1071/Ap09097
  39. McLean M.S., Howlett B.J., Hollaway G.J. Spot form of net blotch, caused by Pyrenopohra teres f. maculata, is the most prevalent foliar disease of barley in Victoria, Australia. Australas. Plant Pathol. 2010b. V. 39. P. 46–49. https://doi.org/10.1071/AP09054
  40. McLean M.S., Martin A., Gupta S. et al. Validation of a new spot form of net blotch differential set and evidence for hybridisation between the spot and net forms of net blotch in Australia. Australas. Plant Pathol. 2014. V. 43. P. 223–233. https://doi.org/10.1007/s13313-014-0285-8
  41. Mironenko N.V., Anisimova A.V., Baranova O.A. et al. Species composition and structure on mating-type loci and virulence of Pyrenophora teres populations in the North-West region of Russia and Belarus. Mikologiya i fitopatologiya. 2016. V. 50 (3). P. 185–194. (in Russ.).
  42. Mironenko N.V., Lashina N.M., Baranova O.A. et al. Hybridization between forms of Pyrenophora teres in natural populations of Russia and Belarus. Mikologiya i fitopatologiya. 2021. V. 55 (1). P. 51–58. (in Russ.) https://doi.org/10.31857/S0026364821010074
  43. Muria-Gonzalez M.J., Zulak K.G., Allegaert E. et al. Profile of the in vitro secretome of the barley net blotch fungus, Pyrenophora teres f. teres. Physiol. Mol. Plant Pathol. 2020. V. 109. P. 101451. https://doi.org/10.1016/j.pmpp.2019.101451
  44. Murray G.M., Brennan J.P. Estimating disease losses to the Australian barley industry. Australas. Plant Pathol. 2010. V. 39 (1). P. 85–96. https://doi.org/10.1071/AP09064
  45. Neupane A., Tamang P., Brueggeman R.S. et al. Evaluation of a barley core collection for spot form of net blotch reaction reveals distinct genotype-specific pathogen virulence and host susceptibility. Phytopathology. 2015. V. 105 (4). P. 509–517. https://doi.org/10.1094/PHYTO-04-14-0107-R
  46. Novakazi F., Afanasenko O., Anisimova A. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). Theor. Appl. Genet. 2019. V. 132 (9). P. 2633–2650. https://doi.org/10.1007/s00122-019-03378-1
  47. Poudel B., Ellwood S.R., Testa A.C. et al. Rare Pyrenophora teres hybridization events revealed by development of sequence-specific PCR markers. Phytopathology. 2017. V. 107 (7). P. 878–884. https://doi.org/10.1094/PHYTO-11-16-0396-R
  48. Rau D., Attene G., Brown A.H. et al. Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley “net blotch: disease. Current Genetics. 2007. V. 51 (6). P. 377–392. https://doi.org/10.1007/s00294-007-0126-1
  49. Rehman S., Gyawali S., Amri A. et al. First report of spot blotch of barley caused by Cochliobolus sativus in Morocco. Plant Dis. 2020. V. 104 (3). P. 988. https://doi.org/10.1094/PDIS-09-19-1923-PDN
  50. Richards J., Chao S., Friesen T. et al. Fine mapping of the barley chromosome 6H net form net blotch susceptibility locus. G3 (Bethesda). 2016. V. 6 (7). P. 1809–1818. https://doi.org/10.1534/g3.116.028902
  51. Rozanova I.V., Lashina N.M., Mustafin Z.S. et al. SNPs associated with barley resistance to isolates of Pyrenophora teres f. teres. BMC Genomics. 2019. V. 20 (3). P. 292. https://doi.org/10.1186/s12864-019-5623-3
  52. Serenius M. Population structure of Pyrenophora teres, causal agent of net blotch of barley. PhD Thesis. Helsinki, 2006.
  53. Serenius M., Manninen O., Wallwork H. et al. Genetic differentiation in Pyrenophora teres populations measured with AFLP markers. Mycol. Research. 2007. V. 111 (2). P. 213–223. https://doi.org/10.1016/j.mycres.2006.11.009
  54. Shipton W.A., Khan T.N., Boyd W.J.R. Net blotch of barley. Rev. Plant Pathol. 1973. V. 52. P. 269–290.
  55. Smedegård-Petersen V. Inheritance of genetic factors for symptoms and pathogenicity in hybrid of Pyrenophora teres and Pyrenophora graminea. Phytopath. Z. 1977. V. 89 (3). P. 193–202. https://doi.org/10.1111/j.1439-0434.1977.tb02858.x
  56. Smedegård-Petersen V. Isolation of two toxins produced by Pyrenophora teres and their significance in disease development of net spot blotch of barley. Physiological Plant Pathology. 1977. V. 10 (3). P. 203–208. https://doi.org/10.1016/0048-4059(77)90024-8
  57. Smedegård-Petersen V. Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres on barley in Denmark. Yearb. R. Vet. Agric. 1971. P. 124–144.
  58. Syme R.A., Martin A., Wyatt N.A. et al. Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host–pathogen genetic interactions. Front. Genet. 2018. V. 9. P. 130. https://doi.org/10.3389/fgene.2018.00130
  59. Tamang P., Richards J.K., Alhashal A. et al. Mapping of barley susceptibility/resistance QTL against spot form net blotch caused by Pyrenophora teres f. maculata using RIL populations. Theor. Appl. Genet. 2019. V. 132 (7). P. 1953–1963. https://doi.org/10.1007/s00122-019-03328-x
  60. Tekauz A. A numerical scale to classify reactions of barley to Pyrenophora teres. Can J. Plant Pathology. 1985. V. 7 (2). P. 181–183. https://doi.org/10.1080/07060668509501499
  61. Tekauz A. Characterization and distribution of pathogenic variation in Pyrenophora teres f. teres and P. teres f. macu-lata from western Canada. Can. J. Plant Pathol. 1990. V. 12 (2). P. 141–148. https://doi.org/10.1080/07060669009501017
  62. Turkington T. K., Tekauz A., Xi K. et al. Foliar diseases of barley: don’t rely on a single strategy from the disease management toolbox. Prairie Soils Crops. 2011. V. 4. P. 142–150. http://www.prairiesoilsandcrops.ca [2022 May 11].
  63. Wallwork H., Butt M., Capio E. Pathogendiversity and screening for minor gene resistance to Pyrenophora teres f. teres in barley and its use for plant breeding. Australas. Plant Pathol. 2016. V. 45 (5). P. 527–531. https://doi.org/10.1007/s13313-016-0433-4
  64. Wang X., Mace E.S., Platz G.J. et al. Spot form of net blotch resistance in barley is under complex genetic control. Theor. Appl. Genet. 2015. V. 128 (3). P. 489–499. https://doi.org/10.1007/s00122-014-2447-z
  65. Weiergang I., Jørgensen H.J.L., Møller I.M. et al. Correlation between sensitivity of barley to Pyrenophora teres toxins and susceptibility to the fungus. Physiol. Mol. Plant Pathol. 2002. V. 60 (3). P. 121–129. https://doi.org/10.1006/pmpp.2002.0384
  66. Williams K.J., Platz G.J., Barr A.R. et al. A comparison of the genetics of seedling and adult plant resistance to the spot form of net blotch (Pyrenophora teres f. maculata). Crop Pasture Sci. 2003. V. 54 (12). P. 1387–1394. https://doi.org/10.1071/AR03028
  67. Williams K.J., Smyl C., Lichon A. et al. Development and use of an assay based on the polymerase chain reaction that differentiates the pathogens causing spot form and net form of net blotch of barley. Austral. Plant Pathol. 2001. V. 30. P. 37–44. https://doi.org/10.1071/AP00063
  68. Анисимова А.В., Мироненко Н.В., Левштанов С.А. (Anisimova et al.) Первая находка гриба Pyrenophora teres f. maculata в Краснодарском крае // Вестник защиты растений. 2011. № 3. С. 53–56.
  69. Лашина Н.М., Афанасенко О.С. (Lashina, Afanasenko) Поражаемость пятнистостями сортов ячменя, включенных в государственный реестр селекционных достижений и находящихся на сортоиспытаниях в условиях Северо-Запада Российской Федерации // Вестник защиты растений. 2019. № 2 (100). С. 23–28.
  70. Мироненко Н.В., Анисимова А.В., Баранова О.А. (Miro-nenko et al.) Внутривидовой состав и структура популяций Pyrenophora teres в Северо-Западном регионе России и Беларуси по вирулентности и локусам типа спаривания // Микология и фитопатология. 2016. Т. 50. № 3. С. 185–194.
  71. Мироненко Н.В., Лашина Н.М., Баранова О.А. и др. (Mironenko et al.) Гибридизация между формами Pyrenophora teres в природных популяциях России и Республики Беларусь // Микология и фитопатология. 2021. Т. 55. № 1. С. 51–58.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (52KB)

Copyright (c) 2023 Н.М. Лашина, Н.В. Мироненко, А.А. Зубкович, О.С. Афанасенко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies