Relation Between the Microstructure of Cold Resistant Steel 20GL and Some Parameters of the Melting Process


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microstructure, impact toughness and melting parameters of cold-resistant steel 20GL are studied. The impact toughness of the steel at negative temperature (KCV-60) is shown to be affected the most by the size of the primary (natural) grains of the metal. The size of the natural grains is shown to be dependent on the content of oxygen and (to a less degree) of silicon. Introduction of an elevated amount of slag-forming materials and aluminum into liquid metal provides the required (at most 0.005–0.008 wt.%) content of oxygen and an impact toughness (KCV-60) no less than 0.167 MJ/m2. Influence of the nonmetallic inclusions, of the size of actual grains, and of the content of pearlitic phase on KCV-60 in normalized steel has not been detected or was not obvious.

About the authors

V. P. Ermakova

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: metallography@mail.ru
Russian Federation, Ekaterinburg

V. G. Smirnova

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: metallography@mail.ru
Russian Federation, Ekaterinburg

I. V. Nekrasov

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: metallography@mail.ru
Russian Federation, Ekaterinburg

O. Yu. Sheshukov

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Ural Federal University after the First President of Russia B. N. Eltsyn

Email: metallography@mail.ru
Russian Federation, Ekaterinburg; Ekaterinburg

L. A. Marshuk

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: metallography@mail.ru
Russian Federation, Ekaterinburg

V. S. Gulyakov

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: metallography@mail.ru
Russian Federation, Ekaterinburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature