Kinematic problem of optimal nonlinear stabilization of angular motion of a rigid body
- Авторы: Biryukov V.G.1, Chelnokov Y.N.1,2
- 
							Учреждения: 
							- Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences
- Chernyshevskii Saratov State University
 
- Выпуск: Том 52, № 2 (2017)
- Страницы: 119-127
- Раздел: Article
- URL: https://journals.rcsi.science/0025-6544/article/view/162898
- DOI: https://doi.org/10.3103/S0025654417020017
- ID: 162898
Цитировать
Аннотация
The problem of optimal transfer of a rigid body to a prescribed trajectory of preset angular motion is considered in the nonlinear statement. (The control is the vector of absolute angular velocity of the rigid body.) The functional to be minimized is a mixed integral quadratic performance criterion characterizing the general energy expenditure on the control and deviations in the state coordinates.
Pontryagin’s maximum principle is used to construct the general analytic solution of the problem in question which satisfies the necessary optimality condition and ensures the asymptotically stable transfer of the rigid body to any chosen trajectory of preset angular motion. It is shown that the obtained solution also satisfies Krasovskii’s optimal stabilization theorem.
Ключевые слова
Об авторах
V. Biryukov
Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences
														Email: chelnokovyun@gmail.com
				                					                																			                												                	Россия, 							ul. Rabochaya 24, Saratov, 410028						
Yu. Chelnokov
Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences; Chernyshevskii Saratov State University
							Автор, ответственный за переписку.
							Email: chelnokovyun@gmail.com
				                					                																			                												                	Россия, 							ul. Rabochaya 24, Saratov, 410028; ul. Astrakhanskaya 83, Saratov, 410012						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					