Cretaceous–eocene flysch of the sochi synclinorium (western caucasus): sources of clastic material based on the results of U–Th–Pb isotope dating of detrital zircons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first results of U–Th–Pb isotope dating of detrital zircons (dZr, N = 130, n = 91) from the Middle Danian sandstones (63.9–65.3 Ma) of the Cretaceous–Eocene Novorossiysk–Anapa flysch, widely developed in the Sochi synclinorium (Southern slope of the Western Caucasus) are presented. The maximum dZr age is 2973 ± 12 Ma, the minimum dZr age is 318 ± 3 Ma; weighted average age of the 4 youngest dZr ~ 322 ± 7 Ma. There are no signs of the destruction products of the Jurassic magmatites involved in the structure of the Greater Caucasus and the Crimean Mountains into the sedimentary basin, in which the Novorossiysk-Anapa flysch was formed. A high degree of similarity between the provenance signals of the Danian sandstones from the Novorossiysk-Anapa flysch, some Paleogene-Neogene and Early Quaternary (Early Pleistocene) sandstones of the Western Caucasus and Western Cis-Caucasia, red-colored Upper Permian and Lower Triassic sandstones of the Moscow syneclise, as well as Late Quaternary alluvium of the lower reaches of the draining vast expanses of the Russian plate Don and Volga rivers has been revealed. On this basis, it was concluded that in the Middle Danian there were no eroded mountain structures of the Greater Caucasus and Crimea, and the main volume of detrital material composing the Novorossiysk-Anapa flysch was formed due to the recycling of Permian-Triassic and younger strata of the Russian Plate.

Full Text

Restricted Access

About the authors

N. B. Kuznetsov

Geological Institute RAS

Author for correspondence.
Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

T. V. Romanyuk

Schmidt Institute of Physics of the Earth RAS

Email: kouznikbor@mail.ru
Russian Federation, 123242, Moscow, Bolshaya Gruzinskaya, 10, bld. 1

A. V. Shatsillo

Schmidt Institute of Physics of the Earth RAS

Email: kouznikbor@mail.ru
Russian Federation, 123242, Moscow, Bolshaya Gruzinskaya, 10, bld. 1

I. V. Latysheva

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

I. V. Fedyukin

Schmidt Institute of Physics of the Earth RAS

Email: kouznikbor@mail.ru
Russian Federation, 123242, Moscow, Bolshaya Gruzinskaya, 10, bld. 1

A. V. Strashko

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

A. S. Novikova

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

E. A. Shcherbinina

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

A. V. Drazdova

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

E. I. Makhinya

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

A. V. Marinin

Schmidt Institute of Physics of the Earth RAS

Email: kouznikbor@mail.ru
Russian Federation, 123242, Moscow, Bolshaya Gruzinskaya, 10, bld. 1

A. S. Dubenskiy

Geological Institute RAS; Lomonosov Moscow State University

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1; 119991, Moscow, Leninskiye Gory, 1, bld. 3

K. G. Erofeeva

Geological Institute RAS; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1; 119017, Moscow, Staromonetny lane, 35

V. S. Sheshukov

Geological Institute RAS

Email: kouznikbor@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane 7, bld. 1

References

  1. Александрова Г. Н., Ерофеева К. Г., Кузнецов Н. Б., Романюк Т. В., Шешуков В. С., Дубенский А. С., Ляпунов С. М., Яковлева А. И., Паньков В. Н. Первые результаты U–Pb датирования зерен детритового циркона из олигоцена юго-востока Воронежской антеклизы и их значение для палеогеографии // Доклады Российской академии наук. Науки о Земле. 2020. Т. 494. № 1. С. 14– 19. doi: 10.31857/S2686739720090042
  2. Альмендингер О. А., Митюков А. В., Мясоедов Н. К., Никишин А. М. Современный рост складок, процессы эрозии и седиментации в глубоководной части Туапсинского прогиба в Черном море по данным 3D сейсморазведки // Докл. РАН. 2011. Т. 439. № 1. С. 76–78.
  3. Афанасенков А. П., Никишин А. М., Обухов А. Н. Геологическое строение и углеводородный потенциал Восточно-Черноморского региона. М: Научный мир, 2007. 172 с.
  4. Баскакова Г. В., Васильева Н. А., Никишин А. М., Доронина М. С., Ихсанов Б. И. Выделение основных тектонических событий по данным 2D–3D сейсморазведки в Восточно-Черноморском регионе // Вестник МГУ. Серия 4: Геология. 2022. № 4. С. 21–33.
  5. Большой Кавказ в альпийскую эпоху / Ред. Ю. Г. Леонов. М.: ГЕОС, 2007. 368 с.
  6. Геология СССР. Т. IX. Северный Кавказ. Ч. 1 / Ред. В. Л. Андрущук, А. Я. Дубинский, В. Е. Хаин. М.: Нед-ра, 1968. 760 с.
  7. Герасимов В. Ю., Ульянов А. А., Снежко В. А., Мозар Д., Лаврищев В. А., Газеев В. М., Гурбанов А. Г. Цирконометрия юрских базальтов Гойтхской вулканической области Западного Кавказа // Вестник МГУ. Серия 4: Геология. 2022. № 1. С. 35–41.
  8. Гурбанов А. Г., Газеев В. М., Лексин А. Ю., Хесс Ю. С. Нижнеюрский островодужный базальт-андезит-дацитовый магматизм Центрального Кавказа (Карачаевская вулканическая область): петролого-геохимические и изотопные особенности, генезис // Вестник Владикавказского научного центра. 2011. Т. 11. № 2. С. 15–32.
  9. Кайгородова Е. Н. Геологические особенности золото-сульфидного месторождения Радужное (Большой Кавказ) и условия его формирования / Дисс. … канд. геол.-мин. наук. М.: ИГЕМ РАН, 2022. 228 с.
  10. Кайгородова Е. Н., Лебедев В. А. Возраст, петролого-геохимические характеристики и происхождение магматических пород среднеюрского хуламского вулкано-плутонического комплекса (Северный Кавказ) // Вулканология и сейсмология. 2022. № 2. С. 38–65. doi: 10.31857/S0203030622020031
  11. Корсаков С. Г., Семенуха И. Н., Горбова С. М., Зарубин В. В., Соколов В. В., Тузиков Г. Р., Черных В. И., Терещенко Л. А., Андреев В. М. Государственная геологическая карта Российской Федерации масштаба 1 : 200 000. Изд. 2-е. Серия Кавказская. Лист К-37-ХХХIV (Туапсе). Объяснительная записка. СПб.: Изд-во картфабрики ВСЕГЕИ, 2002. 151 с.
  12. Корсаков С. Г., Горбова С. М., Каменев С. А., Семенуха И. Н., Черных В. И., Соколов В. В., Тузиков Г. Р., Сааков В. Г., Прокуронов П. В., Андреев В. М., Шельтинг С. К., Романова Г. Е., Гросс Е. Г., Сивуха Н. М. Государственная геологическая карта Российской Федерации масштаба 1 : 200 000. Изд. 2-е. Серия Кавказская. Лист L-37-ХХХIV (Геленд- жик). Объяснительная записка. СПб.: Изд-во картфаб- рики ВСЕГЕИ, 2021. 106 с.
  13. Кузнецов Н. Б., Романюк Т. В. Пери-Гондванские блоки в структуре южного и юго-восточного обрамления Восточно-Европейской платформы // Геотектоника. 2021. № 4. С. 3–40.
  14. Кузнецов Н. Б., Романюк Т. В., Страшко А. В., Новикова А. С. Офиолитовая ассоциация мыса Фиолент (запад Горного Крыма) – верхнее ограничение возраста по результатам U–Pb изотопного датирования плагиориолитов (скала Монах) // Записки Горного института. 2022. № 4. С. 3–15.
  15. Маринин А. В., Расцветаев Л. М. Структурные парагенезы северо-западного Кавказа // Проблемы тектонофизики / Ю. Л. Ребецкий, Д. Н. Осокина, А. В. Михайлова и др. // К сорокалетию создания М. В. Гзовским лаборатории тектонофизики в ИФЗ РАН. М.: ИФЗ РАН, 2008. С. 191–224.
  16. Маринин А. В., Ступин С. И., Копаевич Л. Ф. Строение и стратиграфическое положение Агойской олистостромы (Северо-Западный Кавказ) // Вестник МГУ. Серия. 4: Геология. 2017. № 5. С. 29–40.
  17. Митюков А. В., Альмендингер О. А., Мясоедов Н. К., Никишин А. М., Гайдук В. В. Седиментационная модель Туапсинского прогиба (Черное море) // Докл. РАН. 2011. Т. 440. № 3. С. 384–388.
  18. Морозова Е. Б., Сергеев С. А., Савельев А. Д. Меловые и юрские интрузии Горного Крыма: первые данные U–Pb (SIMS SHRIMP)-датирования // ДАН. 2017. Т. 474. № 1. С. 66–72.
  19. Никишин А. М., Ершов А. В., Никишин В. А. Геологическая история Западного Кавказа и сопряженных краевых прогибов на основе анализа регионального сбалансированного разреза // Докл. РАН. 2010. Т. 430. № 4. С. 515–517.
  20. Никишин А. М., Романюк T. В., Московский Д. В., Кузнецов Н. Б., Колесникова A. A., Дубенский А. С., Шешуков В. С., Ляпунов С. М. Верхнетриасовые толщи Горного Крыма: первые результаты U–Pb датирования детритовых цирконов // Вестник МГУ. Серия 4: Геология. 2020. № 2. С. 18–33.
  21. Патина И. С., Попов С. В. Сейсмостратиграфия регрессивных фаз майкопского и тарханского комплексов северного шельфа Восточного Паратетиса // Тектоника и геодинамика земной коры и мантии: фундаментальные проблемы-2023. М.: ГЕОС, 2023. Т. 2. С. 68–72.
  22. Попов С. В., Антипов М. П., Застрожнов А. С. и др. Колебания уровня моря на северном шельфе Восточного Паратетиса в олигоцене–неогене // Стратиграфия. Геол. корреляция. 2010. Т. 18. № 2. С. 99–124.
  23. Попов С. В., Ахметьев М. А., Лопатин А. В. и др. Палеогеография и биогеография бассейнов Паратетиса. Ч. 1. Поздний эоцен – ранний миоцен // Труды ПИН РАН. Т. 292. М.: Научный мир, 2009. 178 с.
  24. Романюк Т. В., Кузнецов Н. Б., Рудько С. В., Колесникова А. А., Московский Д. В., Дубенский А. С., Шешуков В. С., Ляпунов С. М. Изотопно-геохимические характеристики каменноугольно-триасового магматизма в Причерно- морье по результатам изучения зерен детритового циркона из юрских грубообломочных толщ Горного Крыма // Геодинамика и тектонофизика. 2020. Т. 11. № 3. С. 453–473. doi: 10.5800/GT-2020-11-3-0486
  25. Рудько С. В., Кузнецов Н. Б., Романюк Т. В., Белоусова Е. А. Строение и основанный на первых результатах U/Pb-датирования детритных цирконов возраст конгломератов г. Южная Демерджи (верхняя юра, Горный Крым) // ДАН. 2018. Т. 483. № 3. С. 306–309. doi: 10.31857/S086956520003254-2
  26. Рудько С. В., Кузнецов Н. Б., Белоусова Е. А., Романюк Т. В. Возраст, Hf-изотопная систематика детритовых цирконов и источник сноса конгломератов г. Южная Демерджи, Горный Крым // Геотектоника. 2019. № 5. С. 36–61. doi: 10.31857/S0016-853X2019536-61.
  27. Чистякова А. В., Веселовский Р. В., Семёнова Д. В., Ковач В. П., Адамская Е. В., Фетисова А. М. Стратиграфическая корреляция пермо-триасовых разрезов Московской синеклизы: первые результаты U– Pb-датирования обломочного циркона // Доклады Российской академии наук. Науки о Земле. 2020. Т. 492. № 1. С. 23–28.
  28. Agnini C., Fornaciari E., Raffi I., Catanzariti R., Pälike H., Backman J., Rio D. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes // Newsletters on Stratigraphy. 2014. V.47(2). P. 131– 181. doi: 10.1127/0078-0421/2014/0042
  29. Allen M. B., Morton A. C., Fanning C. M., Ismail-Zadeh A.J., Kroonenberg S. B. Zircon age constraints on sediment provenance in the Caspian region // Journal of the Geological Society, London. 2006. V. 163. P. 647–655.
  30. Andersen T. ComPbCorr – Software for common lead correction of U–Th–Pb analyses that do not report 204Pb // LA-ICP-MS in the Earth Sciences: Principles and Applications / Ed. P. J. Sylvester (Canada) // Mineralogical Association of Canada, Short Course Series. 2008. V. 40. P. 312–314.
  31. Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb // Chemical Geology. 2002. V. 192. P. 59–79.
  32. Andersen T. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation // Chemical Geology. 2005. V. 216. P. 249–270.
  33. Bouma A. H. Sedimentology of Some Flysch Deposits. Amsterdam: Elsevier, 1962. 168 p.
  34. Cowgill E., Forte A. M., Niemi N. et al. Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance // Tectonics. 2016. V. 35. P. 2918–2947. doi: 10.1002/2016TC004295
  35. Elhlou S., Belousova E. A., Griffin W. L., Pearson N. J., O’Reily S.Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation // Geochim. Cosmochim. Acta. 2006. V. 70. № 18. P. A158.
  36. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S.Y. GLITTER: data reduction software for laser ablation ICP-MS // Laser ablation ICP-MS in the Earth sciences: current practices and outstanding issues / Ed. P. J. Sylvester // Mineral. Assoc. Can. Short Course. 2008. V. 40. P. 308–311.
  37. Harrison T. M., Watson E. B., Aikman A. B. Temperature spect-ra of zircon crystallization in plutonic rocks // Geology. 2007. V. 35(7). P. 635–638. https://doi.org/10.1130/G23505A.1
  38. Horstwood M. S.A., Kosler J., Gehrels G., Jackson S. E., McLean N.M., Paton Ch., Pearson N. J., Sircombe K., Sylvester P., Vermeesch P., Bowring J. F., Condon D. J., Schoene B. Community-derived standards for LA-ICP-MS U–(Th–)Pb geochronology – uncertainty propagation, age interpretation and data reporting // Geostandards Geoanalytical Res. 2016. V. 40. № 1. P. 311–332.
  39. Hoskin P. W., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Reviews in Mi-neralogy and Geochemistry. 2003. V. 53(1). P. 27–62. doi: 10.2113/0530027
  40. Jackson S. E., Pearson N. J., Griffin W. L., Belousova E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chemical Geology. 2004. V. 211. P. 47–69.
  41. Kaczmarek M. A., Müntener O., Rubatto D. Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps) // Contributions to Mineralogy and Petrology. 2008. V. 155(3). P. 295–312. doi: 10.1007/s00410-007-0243-3
  42. Kirkland C. L., Smithies R. H. et al. Zircon Th/U ratios in magmatic environs // Lithos. 2015. V. 212–215. P. 397–414.
  43. Koltringer C., Stevens T., Lindner M. et al. Quaternary sediment sources and loess transport pathways in the Black Sea – Caspian Sea region identified by detrital zircon U–Pb geochronology // Global and Planetary Change. 2022. V. 209. 103736. doi: 10.1016/j.gloplacha.2022.103736
  44. Kuznetsov N. B., Belousova E. A., Griffin W. L. et al. Pre-Mesozoic Crimea as a continuation of the Dobrogea platform: Insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea // International Journal of Earth Sciences. 2019. V. 108. Iss.7. P. 2407– 2428. doi: 10.1007/s00531-019-01770-2
  45. Linnemann U., Ouzegane K., Drareni A., Hofmann M., Be-cker S., Gärtner A., Sagawe A. Sands of West Gondwana: an archive of secular magmatism and plate interactions – a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb-LA-ICP-MS detrital zircon ages // Lithos. 2011. V. 123(1–4). P. 188–203. DOI: 1016/j.lithos.2011.01.010
  46. Ludwig K. R. User’s manual for Isoplot 3.75. A geochronolo-gical toolkit for Microsoft Excel // Berkeley Geochronology Center. Special Publications. 2012. № 5. 75 p.
  47. Martini E. Standard Tertiary and Quaternary calcareous nannoplankton zonation / Ed. A. Farinacci // Proceedings of the 2nd Planktonic Conference on Planktonic Microfossils Roma. Tecnoscienza, Roma, 1971. V. 2. P. 739–785.
  48. Nikishin A. M., Wannier M., Alekseev A. S. et al. Mesozoic to recent geological history of southern Crimea and the Eas-tern Black Sea region / Eds. M. Sosson, R. A. Stephenson, S. A. Adamia // Tectonic Evolution of the Eastern Black Sea and Caucasus // Geological Society, London. Special Publications. 2015a. 428 p. doi: 10.1144/SP428.1
  49. Nikishin A. M., Okay A., Tuysuz O. et al. The Black Sea Basins structure and history: new model based on new deep penet-ration regional seismic data. Part 1. Basins structure // Marine and Petroleum Geology. 2015b. V. 59. P. 638–655. doi: 10.1016/j.marpetgeo.2014.08.017
  50. Nikishin A. M., Okay A., Tuysuz O. et al. The Black Sea Basins structure and history: new model based on new deep penetration regional seismic data. Part 2. Tectonic history and paleogeography // Marine and Petroleum Geology. 2015c. V. 59. P. 656–670. doi: 10.1016/j.marpetgeo.2014.08.018
  51. Okay A. I., Nikishin A. M. Tectonic evolution of the southern margin of Laurasia in the Black Sea region // International Geology Review. 2015. V. 57. № 5–8. P. 1051–1076. doi: 10.1080/00206814.2015.1010609
  52. Okay A. I., Sunal G., Sherlock S. et al. Early Cretaceous sedimentation and orogeny on the southern active margin of Eurasia: Central Pontides, Turkey // Tectonics. 2013. doi: 10.1002/tect.20077
  53. Okay A. I., Tanzel I., Tüysüz O. Obduction, subduction and collision as reflected in the Upper Cretaceous – Lower Eocene sedimentary record of Western Turkey // Geological Magazine. 2001. doi: 10.1017/S0016756801005088
  54. Palcu D. V., Patina I. S., Sandric I. et al. Late Miocene megalake regressions in Eurasia // Scientific Reports. 2021. № 11. P. 11471.
  55. Popov D. V., Brovchenk V. D., Nekrylov N. A. et al. Removing a mask of alteration: geochemistry and age of the Karadag volcanic sequence in SE Crimea // Lithos. 2019. V. 324. P. 371–384.
  56. Popov S. V., Rögl S., Rozanov A. Y. et al. Lithological-palaeogeographic maps of the Paratethys // Courier Forschungs – Institut Senckenberg, 2004. № 250. 73 p.
  57. Rubatto D. Zircon: The Metamorphic Mineral // Reviews in Mineralogy and Geochemistry. 2017. V. 83(1). P. 261–295.
  58. Shanmugam G. The turbidite-contourite-tidalite-baroclinite-hybridite problem: orthodoxy vs. empirical evidence behind the “Bouma Sequence” // Journal of Palaeogeography. 2021. V. 10. № 9. P. 1–32. doi: 10.1186/s42501-021-00085-1
  59. Skublov S. G., Berezin A. V., Berezhnaya N. G. General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian mobile belt // Petrology. 2012. V. 20(5). P. 427–449.
  60. Sláma J., Košler J., Condon D. J. et al. Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis // Geological Magazine. 2008. V. 249. P. 1–35.
  61. Speijer R. P., Pälike H., Hollis C. J. et al. Chapter 28 – the Paleogene Period // Geologic Time Scale. 2020. V. 2. P. 1087– 1140. doi: 10.1016/B978-0-12-824360-2.00028-0
  62. Teipel U., Eichhorn R., Loth G., Rohrmuller J., Holl R., Kennedy A. U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism // International Journal of Earth Sciences (Geol. Rundsch). 2004. V. 93. P. 782–801.
  63. Tye A. R., Niemi N. A., Safarov R. T. et al. Sedimentary res-ponse to a collision orogeny recorded in detrital zircon pro-venance of Greater Caucasus foreland basin sediments // Basin Research. 2021. V. 33. Iss. 2. P. 933–967. doi: 10.1111/BRE.12499
  64. Vasey D. A., Cowgill E., Roeske S. M. et al. Evolution of the Greater Caucasus basement and formation of the Main Caucasus Thrust, Georgia // Tectonics. 2020. V. 6. P. 1–26. doi: 10.1029/2019TC005828
  65. Vermeesch P. How many grains are needed for a provenance study? // Earth Planet. Sci. Lett. 2004. V. 224. P. 351–441.
  66. Vermeesch P. On the visualization of detrital age distributions // Chemical Geology. 2012. V. 312–313. P. 190–194.
  67. Vincent S. J., Carter A., Lavrishev V. A. et al. The exhumation of the western Greater Caucasus: a thermochronometric study // Geological Magazine. 2011. V. 148(1). P. 1–21. doi: 10.1017/S0016756810000257
  68. Wanless V. D., Perfit M. R., Ridley W. I. et al. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: the role of assimilation at spreading centers // Chemical Geology. 2011. V. 287(1–2). P. 54– 65. doi: 10.1016/j.chemgeo.2011.05.017
  69. Wiedenbeck M., Allen P., Corfu F. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses // Geostandards Newsletter. 1995. V. 19. P. 1–23.
  70. Wiedenbeck M., Hanchar J. M., Peck W. H. et al. Further cha-racterization of the 91 500 Zircon crystal // Geostandards Geoanalytical Research. 2004. V. 28. P. 9–39.
  71. Wilhem C. (compiler) Maps of the Callovian and Tithonian Paleogeography of the Caribbean, Atlantic, and Tethyan Realms: Facies and Environments // Geological Society of America Digital Map and Chart Series. 2014a. V. 17. 3 sheets.
  72. Wilhem C. Notes on Maps of the Callovian and Tithonian Paleogeography of the Caribbean, Atlantic, and Tethyan Realms: Facies and Environments // Geological Society of America Digital Map and Chart Series. 2014b. V. 17. 9 p. doi: 10.1130/2014.DMCH017
  73. Yuan H.-L., Gao S., Dai M.-N. et al. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS // Chemical Geology. 2008. V. 247. P. 100–118.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tectonic zonality of the Black Sea-Balkan-Anatolian megaregion. The basis of the drawing with simplifications (according to [Okay et al., 2001]) and additions (according to [Okay et al., 2013]). The red asterisk and marking Z0 is the place of sampling K21–012 from the Novorossiysk-Anapa fleece. The markings Z1–Z8 in red indicate the position of the regions or sampling sites. The results of U–Pb dating of detrital zircon grains from them are discussed in the text and are shown further in Figs. 8 and 9.

Download (1MB)
3. Fig. 2. The tectonic zonality of the Caucasus (above) and the scheme of the geological structure of the Nebug-Tuapse region (below) are based on materials from [Korsakov et al., 2002, 2021; Marinin et al., 2017] with simplifications and additions based on the results of the authors' own field research 1-7 – strata distribution fields: anthropogenic – alluvial deposits (1), Eocene (2), Upper Paleocene (3), Lower Paleocene –Denmark (4), Campana–Maastricht (5), Cenomanian–Santonian (6), Alba (7); 8 – discontinuous faults; 9 – elements stratification occurrences: inclined (a), vertical (b), inverted (c); 10th place of sampling K21-012 from the Novorossiysk-Anapa fleece.

Download (2MB)
4. Fig. 3. General view and details of the rock outcrops of the Novorossiysk-Anapa flish, located directly south of the “Kiselyov Rock“ a – ”Kiselyov Rock" (far view) and the rocks bordering the beach located south of it (view from the southern limit of this beach); b – “Kiselyov Rock” (medium plan) and the rocky outcrop of the Novorossiysk-Anapa flish (observation point K21- 012, 44°06ʹ 36.83ʺ s. w. 39°01ʹ 59.13ʺ vd); c is a detail of the structure of a vertical rock outcrop in the southern frame of the beach located south of the “Kiselyov Rock”, illustrating the distinctly rhythmic structure of the Novorossiysk-Anapa fleece; g – one of the turbidite rhythms (incomplete Bowm cycle) in the fragment of the Novorossiysk-Anapa flish section studied in the area of the Kiselyov Rock, indicating the sampling sites for the separation of detrital zircon grains from the sandstones of the turbidite rhythm base – sample K21-012 (dZr), and for micropaleontological studies from siltstone mudstones of the upper element of Togo the same rhythm is the K21-012 (MP) sample.

Download (2MB)
5. Fig. 4. Some features of the internal structure of the Novorossiysk-Anapa flysch section fragment at the Kiselyov Rock site a – abundant ichnofossils (casts of creeping footprints of bottom organisms) on the sole of the sandstone layer forming the base of one of the turbidite rhythms; b, c – convolute stratification in sandy rocks of one of the turbidite rhythms; g – erosion channels filled with sandy materials in the sole of an incomplete rhythm represented by thin rocks (elements "d“ and ”e" of the Bowm cycle).

Download (2MB)
6. Fig. 5. Micrographs of sandstone sections of sample K21–012. On the left (1, 3, 5, 7) – micrographs with parallel nichols, on the right (2, 4, 6, 8) – with crossed knees. 1, 2 – sandstone essentially quartz Q (with glauconite Gl) unsorted massive appearance with basal calcite cement Cc; 3, 4 – sandstone is essentially quartz (with glauconite) unsorted, massive in appearance with abundant calcite cement, numerous needle-like formations of carbonate and siliceous composition (bioclasts), as well as an entire shell of foraminifera of the genus Globigerina filled with silica (chalcedony); 5, 6 – sandstone is essentially quartz (with glauconite) unsorted, massive in appearance with basal calcite cement, with an entire shell of Nodosaria foraminifera filled with crystalline carbonate (calcite); 7, 8 – sandstone is essentially quartz (with glauconite) unsorted, massive in appearance with very abundant calcite cement, bioclasts and whole shells of foraminifera of the genus Lenticulina.

Download (7MB)
7. Fig. 6. Installation of optical images of the studied grains of detrital zircon from sandstones of the Danish interval of the Novorossiysk-Anapa flish section (sample K21-012) For each image, the analysis number is indicated in the upper left corner (missing if sampling has not been performed). The index "o” means that the image is obtained in reflected light, without an index – in passing light with parallel nichols, the index “x” – in passing light with crossed nichols. For some grains, two or three images are shown. If there was a sampling, then the position of the laser ablation crater (circle, diameter 25 mk) and the age of the grain in million years are shown, if a conditional dating was obtained. White dotted lines mark visible kernels or boundaries between dissimilar parts inside the grain. The three images without numbers are examples of grains with such a complex internal structure that they did not contain an area with a diameter of 25 microns without obvious irregularities or inclusions, and therefore sampling for U–Pb dating was not carried out. Images 13, 14, 28, 34, 84, 89, 94, 98, 118 and others are examples of grains with various inclusions. Three images of grain 65 in transmitted and reflected light demonstrate an example of void space (P).

Download (3MB)
8. Fig. 7. Results of the study of the U–Th–Pb isotope system of detrital zircon grains from sample K21-012 a – diagram with concordia. The ellipses show a 68% confidence interval of measurements for all analyses (± 1σ); b - an enlarged fragment of concordia is shown on a gray background; c – a diagram illustrating the weighted average age of 322 ± 7 million years, calculated from the four youngest U–Pb dates; g is a diagram of the contents of Th and U. Analysis of a55 (very low contents of U = 0.2 g/t and Th = 0.4 g/t) is not shown.

Download (622KB)
9. Fig. 8. Comparison of the results of studying the U–Th–Pb isotope system of detrital zircon grains from sandstones of sample K21–012, selected from the Srednedatsky fragment of the Novorossiysk-Anapa flish section, with similar data on sandstones and sands from pre-quaternary strata of the Western Caucasus and other regions

Download (974KB)
10. Fig. 9. Comparison of probability density curves (KPV) of U–Pb ages of detrital zircon grains from sample K21-012 with similar data for Crimea in the age range < 1 billion years In circles: Z7 is an integral CPV summarizing the results of U–Pb dating of detrital zircon grains from the Middle and Upper Jurassic rough–clastic strata of the Mountainous Crimea (4 samples in different geographical locations, n = 269, according to [Romanyuk et al., 2020], Z8 is an integral CPV summarizing data on 9 samples from Middle Jurassic-Neogene sandstones of the Mountainous Crimea (according to [Nikishin et al., 2015a], n = 602); n is the number of analyses used to construct the KPV. Yellow ovals mark three stages of magmatic activity manifested in the Scythian-Pontid volcanic belt: 360-315 million years, 315-270 million years and 270– 200 million years. The blue band J2 marks the widespread Middle Jurassic magmatism in the Mountainous Crimea, Western and Central Caucasus. Information about possible primary sources of zircon of different ages is given in lilac font.

Download (830KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies