Development and Application of Two Multiplexes of Nuclear Microsatellite Loci for the Analysis of Genetic Variability of Scots Pine Populations in Different Parts of the Range

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Multiplexing of microsatellite loci (SSR) can significantly reduce the cost and duration of the analysis. Based on the published microsatellites of Scots pine (Pinus sylvestris L.), we developed and tested two multiplexes of 14 loci on seven populations from different parts of the range. Genetic variability was revealed in all populations. The average number of alleles was 5.78, the average expected heterozygosity was 0.641. Significant interpopulation differentiation at the level of 1.8% was revealed. In all loci, the mean frequencies of null alleles did not exceed 7.1%. The results of the genetic analysis of populations confirm the suitability of the resulting multiplexes for population genetic studies of Scots pine.

About the authors

N. V. Semerikov

Botanical Garden, Ural Branch of the RAS

Author for correspondence.
Email: semerikov2014@mail.ru
Russia, 620144, Yekaterinburg, 8-Marta st., 202a

References

  1. Калько Г.В., Котова Т.М. Микросателлитные маркеры для оценки генетического разнообразия сосны обыкновенной // Труды Санкт-Петербургского научно-исследовательского института лесного хозяйства. 2018. № 3–4. С. 17–30.
  2. Правдин Л.Ф. Сосна обыкновенная. М.: Наука, 1964. 190 с.
  3. Санников С.Н., Санникова Н.С., Петрова И.В. Очерки по теории лесной популяционной биологии. Екатеринбург: РИО УрО РАН, 2012. 271 с.
  4. Шуваев Д., Ибе А., Щерба Ю., Сухих Т., Шилкина Е., Усова Е., Лисотова Е., Репях М., Ступакова О. Разработка панели ядерных микросателлитных локусов для оценки легальности происхождения древесины сосны обыкновенной в Красноярском крае // Хвойные бореальной зоны. 2020. Т. 38. № 5–6. С. 297–304.
  5. Auckland L., Bui T., Zhou Y., Shepherd M., Williams C. Conifer microsatellite handbook. Raleigh: Corporate Press, 2002. 61 p.
  6. Belletti P., Ferrazzini D., Piotti A., Monteleone I., Ducci F. Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy // European J. Forest Research. 2012. V. 131. № 4. P. 1127–1138.
  7. Bernhardsson C., Floran V., Ganea S., Garcia-Gil M. Present genetic structure is congruent with the common origin of distant Scots pine populations in its Romanian distribution // Forest Ecology and Management. 2016. V. 361. P. 131–143.
  8. Chagné D., Chaumeil P., Ramboer A., Collada C., Guevara A., Cervera M., Vendramin G., Garcia V., Frigerio J.-M., Echt C. Cross-species transferability and mapping of genomic and cDNA SSRs in pines // Theoretical and Applied Genetics. 2004. V. 109. № 6. P. 1204–1214.
  9. Chapuis M.P., Estoup A. Microsatellite null alleles and estimation of population differentiation // Molecular Biology and Evolution. 2007. V. 24. № 3. P. 621–631.
  10. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows // Molecular Ecology Resources. 2010. V. 10. № 3. P. 564–567.
  11. Fang P., Niu S., Yuan H., Li Z., Zhang Y., Yuan L., Li W. Development and characterization of 25 EST-SSR markers in Pinus sylvestris var. mongolica (Pinaceae) // Applications in Plant Sciences. 2014. V. 2. № 1. P. 1300057.
  12. Ganea S., Ranade S.S., Hall D., Abrahamsson S., García-Gil M.R. Development and transferability of two multiplexes nSSR in Scots pine (Pinus sylvestris L.) // J. Forestry Research. 2015. V. 26. № 2. P. 361–368.
  13. Guo S.W., Thompson E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles // Biometrics. 1992. V. 48. P. 361–372.
  14. Holleley C.E., Geerts P.G. Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR // BioTechniques. 2009. V. 46. № 7. P. 511–517.
  15. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update // Bioinformatics (Oxford, England). 2012. V. 28. № 19. P. 2537–2539.
  16. Robledo-Arnuncio J.J., Collada C., Alia R., Gil L. Genetic structure of montane isolates of Pinus sylvestris in a Mediterraenean refugial area // J. Biogeography. 2005. V. 32. № 4. P. 595–605.
  17. Rousset F. Genepop’007: a complete re-implementation of the genepop software for Windows and Linux // Molecular Ecology Resources. 2008. V. 8. № 1. P. 103–106.
  18. Sebastiani F., Pinzauti F., Kujala S.T., González-Martínez S.C., Vendramin G.G. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. // Conservation Genetics Resources. 2012. V. 4. № 2. P. 231–234.
  19. Soranzo N., Provan J., Powell W. Characterization of microsatellite loci in Pinus sylvestris L. // Molecular Ecology. 1998. V. 7. № 9. P. 1260–1261.
  20. Tóth E.G., Bede-Fazekas Á., Vendramin G.G., Bagnoli F., Höhn M. Mid-Pleistocene and Holocene demographic fluctuation of Scots pine (Pinus sylvestris L.) in the Carpathian Mountains and the Pannonian Basin: Signs of historical expansions and contractions // Quaternary International. 2019. V. 504. P. 202–213.
  21. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3 – new capabilities and interfaces // Nucleic Acids Research. 2012. V. 40. № 15. P. e115.
  22. Wójkiewicz B., Litkowiec M., Wachowiak W. Contrasting patterns of genetic variation in core and peripheral populations of highly outcrossing and wind pollinated forest tree species // AoB Plants. 2016. V. 8.

Copyright (c) 2023 Н.В. Семериков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies