Morphology and spatial distribution of ordered domains in GaInP/GaAs(001) according to transmission electron microscopy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structure of epitaxial films of the GaInP solid solution, in which ordering occurs, was studied using transmission electron microscopy. The films were grown by metalorganic vapor phase epitaxy on GaAs (001) substrates near the half-composition point. During the study, dark-field images obtained using superstructure reflections for cross-sectional and plan-view specimens of films were analyzed. The morphology and relative spatial arrangement of ordered domains have been determined. The phenomenon of spontaneous self-organization of regions with CuPt–B+ and CuPt–B ordering near the surface was discovered, while in the bulk of the film the domains are uniformly located and mutually overlap each other. The effect of spatial separation of domains is associated with the lattice relaxation, leading to a change in the surface topology.

Авторлар туралы

А. Myasoedov

Ioffe Institute RAS

Хат алмасуға жауапты Автор.
Email: amyasoedov88@gmail.com
Ресей, St. Petersburg

N. Bert

Ioffe Institute RAS

Email: amyasoedov88@gmail.com
Ресей, St. Petersburg

N. Kalyuzhnyy

Ioffe Institute RAS

Email: amyasoedov88@gmail.com
Ресей, St. Petersburg

A. Mintairov

Ioffe Institute RAS

Email: amyasoedov88@gmail.com
Ресей, St. Petersburg

Әдебиет тізімі

  1. Adachi S. Physical Properties of III–V Semiconductor Compounds. NY.: John Wiley & Sons, 1992. 13 p. https://doi.org/10.1002/352760281X
  2. Suzuki T. Basic Aspects of Atomic Ordering in III–V Semiconductor Alloys. NY.: Springer, 2002. 2 p. https://doi.org/10.1007/978-1-4615-0631-7_1
  3. Zunger A., Wood D.M. // J. Cryst. Growth. 1989. V. 98. № 1–2. P. 1. https://doi.org/10.1016/0022-0248(89)90180-2
  4. Srivastava G.P., Martins J.L., Zunger A. // Phys. Rev. B1985. V. 31. № 4. P. 2561. https://doi.org/10.1103/PhysRevB.31.2561
  5. Gomyo A., Suzuki T., Kobayashi K. et al. // Appl. Phys. Lett. 1987. V. 50. № 11. P. 673. https://doi.org/10.1063/1.98062
  6. Gomyo A., Suzuki T., Iijima S. // Phys. Rev. Lett. 1988. V. 60. № 25. P. 2645. https://doi.org/10.1103/PhysRevLett.60.2645
  7. Wei S.H., Laks D.B., Zunger A. // Appl. Phys. Lett. 1993. V. 62. № 16. P. 1937. https://doi.org/10.1063/1.109496
  8. Kurtz S.R. // J. Appl. Phys. 1993. V. 74. № 6. P. 4130. https://doi.org/10.1063/1.354437
  9. Froyen S., Zunger A., Mascarenhas A. // Appl. Phys. Lett. 1996. V. 68. № 20. P. 2852. https://doi.org/10.1063/1.116346
  10. Wei S.-H., Zhang S., Zunger A. // Jpn. J. Appl. Phys. 2000. V. 39. № S1. P. 237. https://doi.org/10.7567/jjaps.39s1.237
  11. Ponce F.A. // J. Phys. Conf. Ser. 2019. V. 1173. № 1. P. 012001. https://doi.org/10.1088/1742-6596/1173/1/012001
  12. Su P.Y., Liu H., Kawabata R.M.S. et al. // J. Appl. Phys. 2019. V. 125. № 5. P. 1. https://doi.org/10.1063/1.5063941
  13. Martín G., Coll C., López-Conesa L. et al. // ACS Appl. Electron. Mater. 2022. V. 4. № 7. P. 3478. https://doi.org/10.1021/acsaelm.2c00415
  14. Mintairov A.M., Kapaldo J., Merz J.L. et al. // Phys. Rev. B. 2017. V. 95. № 11. P. 1. https://doi.org/10.1103/PhysRevB.95.115442
  15. Mintairov A.M., Lebedev D.V., Bert N. et al. // Appl. Phys. Lett. 2019. V. 115. № 20. https://doi.org/10.1063/1.5126527
  16. Ahrenkiel S.P., Jones K.M., Matson R.J. et al. // MRS Proc. 1999. V. 583. P. 243. https://doi.org/10.1557/PROC-583-243
  17. Zhang S.B., Froyen S., Zunger A. // Appl. Phys. Lett. 1995. V. 67. P. 3141. https://doi.org/10.1063/1.114860
  18. Baxter C.S., Stobbs W.M., Wilkie J.H. // J. Cryst. Growth 1991. V. 112. № 2–3. P. 373. https://doi.org/10.1016/0022-0248(91)90313-T
  19. Bellon P., Chevalier J.P., Augarde E. et al. // J. Appl. Phys. 1989. V. 66. № 6. P. 2388. https://doi.org/10.1063/1.344245
  20. Nasi L., Salviati G., Mazzer M., Zanotti‐Fregonara C. // Appl. Phys. Lett. 1995. V. 68. P. 3263. https://doi.org/10.1063/1.116568
  21. Matthews J.W., Blakeslee A.E. // J. Cryst. Growth 1974. V. 27. P. 118. https://doi.org/10.1016/S0022-0248(74)80055-2
  22. Gutekunst G., Mayer J., Rühle M. // Philos. Mag. A. 1997. V. 75. № 5. P. 1329. https://doi.org/10.1080/01418619708209859
  23. Romanov A.E. // Int. J. Mater. Res. 2005. V. 96. № 5. P. 455. https://doi.org/doi.org/10.3139/ijmr-2005-0083
  24. Yastrubchak O., Wosinski T., Figielski T., Lusakowska E. // Physica E. 2003. V. 17. № 1–4. P. 561. https://doi.org/10.1016/S1386-9477(02)00871-8
  25. Zhang C.L., Xu B., Wang Z.G. et al. // Physica E. 2005. V. 25. № 4. P. 592. https://doi.org/10.1016/j.physe.2004.09.008

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>