Diversity of fundamental building blocks [M(IO3)6] in iodate families and new trigonal polymorph of Cs2HIn(IO3)6

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Crystals of new structural high-symmetry modification of Cs2HIn(IO3)6, which crystallyzes in sp. gr. R3 with parameters of unit cell a = 11.8999(4), c = 11.6513(5) Å were obtained in hydrothermal conditions. Crystal chemical comparison with triclinic modification the investigated earlier was carried out. Both structures are composed of isolated blocks [In(IO3)6]3–. The new modification belongs to the family of trigonal iodates isostructural to K2Ge(IO3)6 compound. Local symmetry of separated blocks [M(IO3)6] (M = Ge, Ti, Sn, Ga, In and other metals) are analyzed. Structural systematic of iodate families is suggested on the base of comparative crystal chemical analysis. The influence of cation composition and synthesis conditions on symmetry and topology of crystal structures as well as local symmetry of blocks on physical properties of compounds are discussed.

Full Text

Restricted Access

About the authors

O. V. Reutova

Lomonosov Moscow State University

Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

Russian Federation, Moscow

E. L. Belokoneva

Lomonosov Moscow State University

Author for correspondence.
Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

Russian Federation, Moscow

A. S. Volkov

Skolkovo Institute of Science and Technology

Email: elbel@geol.msu.ru
Russian Federation, Moscow

О. V. Dimitrova

Lomonosov Moscow State University

Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

Russian Federation, Moscow

References

  1. Sun C.-F., Yang B.-P., Mao J.-G. // Sci. China Chem. 2011. V. 54. P. 911. https://doi.org/10.1007/s11426-011-4289-8
  2. Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
  3. Guo S.-P., Chi Y., Guo G.-C. // Coord. Chem. Rev. 2017. V. 335. P. 44. https://doi.org/10.1016/j.ccr.2016.12.013
  4. Mao F.-F., Hu C.-L., Chen J. et al. // Chem. Commun. 2019. V. 55. P. 6906. https://doi.org/10.1039/c9cc02774b
  5. Jia Y.-J., Chen Y.-G., Guo Y. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 48. P. 17194. https://doi.org/10.1002/ange.201908935
  6. Chen J., Hu C.-L., Mao F.-F. et al. // Chem. Sci. 2019. V. 10. P. 10870. https://doi.org/10.1039/c9sc04832d
  7. Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
  8. Wu C., Lin L., Jiang X.X. et al. // Chem. Mater. 2019. V. 31. № 24. P. 10100. https://doi.org/10.1021/acs.chemmater.9b03214
  9. Abudouwufu T., Zhang M., Cheng S.C. et al. // Eur. J. Inorg. Chem. 2019. V. 25. P. 1221. https://doi.org/10.1002/chem.201804995
  10. Luo M., Liang F., Hao X. et al. // Chem. Mater. 2020. V. 32. № 6. P. 2615. https://doi.org/10.1021/acs.chemmater.0c00196
  11. Fan H.X., Lin C.S., Chen K.C. et al. // Angew. Chem. 2020. V. 59. P. 5268. https://doi.org/10.1002/anie.201913287
  12. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2098. https://doi.org/10.1002/anie.201813968
  13. Cao Z., Yue Y., Yao J. et al. // Inorg. Chem. 2011. V. 50. № 24. P. 12818. https://doi.org/10.1021/ic201991m
  14. Wu Q., Liu H., Jiang F. et al. // Chem. Mater. 2016. V. 28. P. 1413. https://doi.org/10.1021/acs.chemmater.5b04511
  15. Zhang M., Hu C., Abudouwufu T. et al. // Chem. Mater. 2018. V. 30. P. 1136. https://doi.org/10.1021/acs.chemmater.7b05252
  16. Mao F.-F., Hu C.-L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
  17. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Commun. 2019 V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
  18. Xu Y., Zhou Y., Lin C. et al. // Cryst. Growth Des. 2021. V. 21. P. 7098. https://doi.org/10.1021/acs.cgd.1c00992
  19. De Boer J.L., van Bolhuis F., Olthof-Hazekamp R.V. // Acta Cryst. 1966. V. 21 (5). P. 841. https://doi.org/10.1107/s0365110x66004031
  20. Liminga R., Abrahams S.C., Bernstein J.L. // J. Chem. Phys. 1975. V. 62. P. 4388. https://doi.org/10.1063/1.430339
  21. Jansen M. // Solid State Chem. 1976. V. 17. P. 1.
  22. Liang J.K., Wang C.G. // Acta Chim. Sin. 1982. V. 40. P. 985.
  23. Schellhaas F., Hartl H.T., Frydrych R. // Acta Cryst. B. 1972. V. 28. № 9. P. 2834.
  24. Phanon D., Bentria B., Jeanneau E. et al. // Z. Krist. 2006. V. 221. P. 635.
  25. Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. № 11. P. 1123. https://doi.org/10.1039/B612677D
  26. Shehee T.C., Pehler S.F., Albrecht-Schmitt T.E. // J. Alloys Compd. 2005. V. 388. P. 225. https://doi.org/10.1016/j.jallcom.2004.07.037
  27. Chang H.-Y., Kim S.-H., Ok K.M., Halasyamani P.S. // J. Am. Chem. Soc. 2009. V. 131. № 19. P. 6865. https://doi.org/10.1021/ja9015099
  28. Sun C.-F., Hu C.-L., Kong F. et al. // Dalton Trans. 2010. V. 39. P. 1473. https://doi.org/10.1039/B917907K
  29. Kim Y.H., Tran T.T., Halasyamani P.S., Ok K.M. // Inorg. Chem. Front. 2015. V. 2. P. 361. https://doi.org/10.1039/C4QI00243A
  30. Yang B.P., Hu C.L., Xu X., Mao J.G. // Inorg. Chem. 2016. V. 55. № 5. P. 2481. https://doi.org/10.1021/acs.inorgchem.5b02859
  31. Liu H., Jiang X., Wang X. et al. // J. Mater. Chem. C. 2018. V. 6. P. 4698. https://doi.org/10.1039/c8tc00851e
  32. Liu K., Han J., Huang J. et al. // RSC Adv. 2021. V. 11. P. 10309. https://doi.org/10.1039/d0ra10726c
  33. Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 2263. https://doi.org/10.1021/ic048428c
  34. Belokoneva E.L., Karamysheva A.S., Dimitrova O.V., Volkov A.S. // Crystallography Reports. 2018. V. 63. P. 734. https://doi.org/10.1134/S1063774518050048
  35. Xiao L., You F., Gong P. et al. // Cryst. Eng. Commun. 2019. V. 21. P. 4981. https://doi.org/10.1039/c9ce00814d
  36. Liu X., Li G., Hu Y. et al. // Cryst. Growth Des. 2008. V. 8. № 7. P. 2453. https://doi.org/10.1021/cg800034z
  37. Mitoudi Vagourdi E., Zhang W., Denisova K. et al. // ACS Omega. 2020. V. 5. № 10. P. 5235. https://doi.org/10.1021/acsomega.9b04288
  38. Yang B.-P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. № 5. P. 1055. https://doi.org/10.1039/c0dt01272f
  39. Реутова О.В., Белоконева Е.Л., Димитрова О.В., Волков А.С. // Кристаллография. 2020. T. 65. № 3. C. 441. https://doi.org/10.31857/S0023476120030273
  40. Park G., Byun H.R., Jang J.I., Ok K.M. // Chem. Mater. 2020. V. 32. P. 3621. https://doi.org/10.1021/acs.chemmater.0c01054
  41. Xu X., Hu C.-L., Yang B.-P., Mao J.-G. // CrystEngComm. 2013. V. 15. № 38. P. 7776. https://doi.org/10.1039/C3CE41185K
  42. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 1. С. 59. https://doi.org/10.1134/S1063774518010029
  43. Gurbanova O.A., Belokoneva E.L. // Crystallography Reports. 2006. V. 51. P. 577. https://doi.org/10.1134/S1063774506040067
  44. CrysAlisPro Software System, Version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK, 2014.
  45. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  46. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
  47. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
  48. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
  49. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
  50. Qian Z., Wu H., Yu H. et al. // Dalton Trans. 2020. V. 49. P. 8443. https://doi.org/10.1039/D0DT00593B
  51. Hector A.L., Henderson S.J., Levason W., Webster M. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 198. https://doi.org/10.1002/1521-3749(200201)628:1<198::AID-ZAAC198>3.0.CO;2-L
  52. Yeon J., Kim S.-H., Halasyamani P.S. // J. Solid State Chem. 2009. V. 182. № 12. P. 3269. https://doi.org/10.1016/j.jssc.2009.09.021
  53. Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
  54. Chen X., Xue H., Chang X. et al. // J. Alloys Compd. 2005. V. 398. P. 173. https://doi.org/10.1016/j.jallcom.2005.01.050
  55. Hebboul Z., Galez C., Benbertal D. et al. // Crystals. 2019. V. 9. P. 464. https://doi.org/10.3390/cryst9090464
  56. Chikhaoui R., Hebboul Z., Fadla M.A. et al. // Nanomaterials. 2021. V. 11. № 12. P. 3289. http://doi.org/10.3390/nano11123289
  57. Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Projection of the structure: lateral Cs2HIn(IO3)6 (a); trigonal Cs2HIn(IO3)6 along the ternary axis (b); triclinic Cs2HIn(IO3)6 along the ternary axis of the pseudorhombohedral cell (c).

Download (295KB)
3. Fig. 2. Centrosymmetric blocks [M(IO3)6] with point symmetry with different configurations in the structures of iodates of the family: АnM(IO3)6 (A = Na, K, Rb, Cs, Ag, Tl+, H3O+, Ba, Sn2+; M = Ge, Ti, Pt, Sn, Zr, Mo4+, Ga, In) (a); AM(IO3)6 (A = Ba, Sr; M = Ti, Sn) (b); SrTi(IO3)6 2H2O (c); M(IO3)3 (M = In, Sc, Tl) (d); M(IO3)3 (M = In, Sc, Tl) – connection of blocks into a layer (e).

Download (172KB)
4. Fig. 3. Acentric blocks [M(IO3)6] (M = Ge, Ti) with point symmetry 3 in the structures of aqueous iodates BaGe(IO3)6 H2O (a), BaTi(IO3)6 0.5H2O (b).

Download (71KB)
5. Рис. 4. Блоки [Ta(IO3)6] и [Sc(IO3)6] с точечной псевдосимметрией 3 в структурах Cs3Ta(IO3)8 (а) и KSc(IO3)3Cl (б) соответственно, боковые проекции структур Cs3Ta(IO3)8 (в) и KSc(IO3)3Cl (г).

Download (352KB)
6. Fig. 5. Block [Nb(IO3)6] with point symmetry 1 in the pseudotrigonal structure (H3O)HCs2Nb(IO3) (a); projection of the structure (H3O)HCs2Nb(IO3)9 onto the ac plane (b).

Download (240KB)
7. Fig. 6. Configuration of the acentric [M(IO3)6] block (M = Li, Ti, Sn, Pt, Al, Cr, Fe3+, Ga, In, Mg, Mn2+, Zn, Cd, Co, Ni, Cu2+) with point symmetry 3 in the structures of hexagonal (space group P63) and pseudohexagonal (space group P21) iodates (a); rods of [Li(IO3)6] blocks in the framework of α-LiIO3 (b); rods of [M(IO3)6] blocks in the structures of the A2M(IO3)6 family (A = Li, Na, H3O+; M = Ti, Sn, Pt) (c); a framework of [M(IO3)6] blocks in the structures of the M(IO3)3 (M = Al, Cr, Fe3+, In, Ga) and M(IO3)2 (M = Mg, Zn, Co, Ni, Cu2+, Mn2+) families (d); a framework of [M(IO3)6] and [Li(IO3)6] blocks in the structures of the LiM(IO3)3 family (M = Mg, Zn, Cd) (e); a framework of alternating [Zn(IO3)6] and [Li(IO3)6] blocks in the structure of LiZn(IO3)3 (space group P21) (e).

Download (322KB)
8. Fig. 7. [M(IO3)6] blocks with pseudosymmetry 2/m in the structures of α-K3In(IO3)6 and A3M(IO3) families (A = Na, K, Rb, Ag, Tl+; M = In, Tl, Fe3+, Mn3+) (a); 2/m in K3Sc(IO3)6 (b); m in Rb3Sc(IO3)6 (c).

Download (118KB)
9. Fig. 8. The [In(IO3)6] block with symmetry 1 in the structure of NaIn(IO3)4 (a); 1 in AgIn(IO3)4 (b); projection of a chain of [In(IO3)6] blocks in the structures of NaIn(IO3)4 (c) and AgIn(IO3)4 (d).

Download (158KB)
10. Fig. 9. Acentric block [M(IO3)6] with symmetry 1 in the structures of the AgM(IO3)4 family (M = Ga, Mn3+) (a); a chain of blocks in the structures of AgGa(IO3)4 (b) and AgMn(IO3)4 (c).

Download (133KB)
11. Fig. 10. Centrosymmetric blocks [M(IO3)6] (M = Sn, In) with symmetry 1 (a); their connection into chains in the structures of Sn(IO3)4 and LiIn(IO3)4 (b).

Download (73KB)
12. Fig. 11. Dimers [Mn2(IO3)10] (a); their connection into a framework in the structure of AgMn(IO3)3 (b).

Download (139KB)
13. Fig. 12. Projection onto the ac plane of the Cs5[Sc2(IO3)9](IO3)2 structure with a framework of [Sc(IO3)6] blocks (a); individual [Sc(IO3)6] blocks with point symmetry 1 and 1 in the Cs5[Sc2(IO3)9](IO3)2 structure (b).

Download (311KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».