Dissolution of impurities in sodium gadolinium molybdate NaGd(MoO4)2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Impurity defects simulation in sodium-gadolinium molybdate NaGd(MoO4)2 was carried out using a method of interatomic potentials. The dissolution energies of tri-, di- and monovalent impurities were estimated. The dependences of the dissolution energy on the ionic radius of the impurity were plotted. For heterovalent substitutions, the most energetically favorable mechanism for charge compensation has been found, both due to intrinsic crystal defects and according to the conjugate isomorphism scheme. The positions of the most probable localization of defects are determined. The effect of disordering of sodium and gadolinium ions at equivalent positions on positional differences in the energy of defects is estimated. A comparison of the solubility of impurities in NaGd(MoO4)2 and its isostructural CaMoO4 indicates that, although isovalent substitutions are energetically more favorable than heterovalent ones, the mechanism of conjugate isomorphism, which ensures electrical neutrality, can equalize these processes.

Full Text

Restricted Access

About the authors

V. В. Dudnikova

Lomonosov Moscow State University

Author for correspondence.
Email: VDudnikova@hotmail.com
Russian Federation, Moscow

N. N. Eremin

Lomonosov Moscow State University

Email: VDudnikova@hotmail.com
Russian Federation, Moscow

References

  1. Майер А.А., Πровоторов М.В., Балашов В.А. // Успехи химии. 1973. Т. 42. С. 1788.
  2. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука, 1986. 173 с.
  3. Schmidt M., Heck S., Bosbach D. et al. // Dalton Trans. 2013. V. 42. P. 8387. https://doi.org/10.1039/c3dt50146a
  4. Wang P., Zhang Z., Su W. et al. // Ceram. Int. 2019. V. 45. P. 21735. https://doi.org/10.1016/j.ceramint.2019.07.174
  5. Huang J., Huang J., Lin Y. et al. // J. Lumin. 2017. V. 187. P. 235. https://doi.org/10.1016/j.jlumin.2016.11.078
  6. Guo W., Chen Y., Lin Y. et al. // J. Phys. Appl. Phys. 2008. V. 41. Р. 115409. https://doi.org/10.1088/0022-3727/41/11/115409
  7. Wu L., Chen Z., Wu Y. et al. // Cryst. Res. Technol. 2016. V. 51 (2). P. 137. https://doi.org/10.1002/crat.201500228
  8. Wang Z., Li X., Wang G. et al. // Opt. Mater. 2008. V. 30. P. 1873. https://doi.org/10.1016/j.optmat.2007.12.012
  9. Ren H., Li H., Zou Y. et al. // J. Lumin. 2022. V. 249. Р. 119034. https://doi.org/10.1016/j.jlumin.2022.119034
  10. Wang X., Chen Z., Pan S. et al. // J. Lumin. 2022. V. 252. Р. 119367. https://doi.org/10.1016/j.jlumin.2022.119367
  11. Li L., Dong D., Zhang J. et al. // Mater. Let. 2014. V. 131. P. 298. https://doi.org/10.1016/j.matlet.2014.05.205
  12. Wang H., Zhou X., Yan J. et al. // J. Lumin. 2018. V. 195. P. 170. https://doi.org/10.1016/j.jlumin.2017.10.052
  13. Vishwakarma P.K., Rai S.B., Bahadur A. // Mater. Res. Bull. 2021. V. 133. Р. 111041. https://doi.org/10.1016/j.materresbull.2020.111041
  14. Mo F., Zhou L., Pang Q. et al. // Ceram. Int. 2012. V. 38. P. 6289. http://dx.doi.org/10.1016/j.ceramint.2012.04.084
  15. Yu X., Jiang Y., Li X. et al. // CrystEngComm. 2022. V. 24. P. 805. https://doi.org/10.1039/D1CE01434J
  16. Du P., Luo L., Park H.K. et al. // Chem. Eng. J. 2016. V. 306. P. 840. https://doi.org/10.1016/j.cej.2016.08.007
  17. Gao Z., Tian B., Liu M. et al. // J. Non-Cryst. Solids. 2023. V. 603. P. 122114. https://doi.org/10.1016/j.jnoncrysol.2022.122114
  18. Yan T., Li Z., Chen S. et al. // Ceram. Int. 2023. V. 49. P. 33681. https://doi.org/10.1016/j.ceramint.2023.08.055
  19. Li A., Xu D., Tang Y. et al. // J. Lumin. 2021. V. 239. Р. 118356. https://doi.org/10.1016/j.jlumin.2021.118356
  20. Zhang L., Meng Q., Sun W. et al. // Ceram. Int. 2021. V. 47. P. 670. https://doi.org/10.1016/j.ceramint.2020.08.175
  21. Wang L., Liu S.Y., Song W.B. et al. // Acta Phys. Pol. A. 2023. V. 144. № 2. P. 87. https://doi.org/10.12693/APhysPolA.144.87
  22. Li A., Li Z., Pan L. et al. // J. Alloys Compd. 2022. V. 904. Р. 164087. https://doi.org/10.1016/j.jallcom.2022.164087
  23. Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
  24. Дудникова В.Б., Антонов Д.И., Жариков Е.В. и др. // ФТТ. 2022. Т. 64. Вып. 10. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354
  25. Bush T.S., Gale J.D., Catlow C.R.A. et al. // Mater. Chem. 1994. V. 4. P. 831. https://doi.org/10.1039/JM9940400831
  26. Дудникова В.Б., Еремин Н.Н. // Кристаллография. 2023. Т. 68. № 1. С. 11. https://doi.org/10.31857/S002347612301006X
  27. Дудникова В.Б., Еремин Н.Н. // Журн. структур. химии 2023. Т. 64. № 9. С. 17248. https://doi.org/10.26902/JSC_id117248
  28. Kröger F.A., Vink H.J. // Solid State Phys. 1956. V. 3 P. 307. https://doi.org/10.1016/S0081-1947(08)60135-6
  29. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
  30. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1938. V. 34. P. 485. https://doi.org/10.1039/TF9383400485
  31. Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. Р. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180
  32. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // ФТТ. 2019. Т. 61. Вып. 4. С. 678. https://doi.org/10.21883/FTT.2019.04.47412.311
  33. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Generated NGM supercell with disordered distribution of sodium and gadolinium over A-positions.

Download (215KB)
3. Fig. 2. One of the variants of the arrangement of cations of the A-sublattice around an impurity ion.

Download (119KB)
4. Fig. 3. Dependence of the dissolution energy of trivalent impurities in NGM on their ionic radius.

Download (35KB)
5. Fig. 4. Dependence of the dissolution energy of divalent impurities in NGM on their ionic radius for different dissolution mechanisms: 1, 2, 3, 4, 5 – equations (10), (8), (12), (14), (6), respectively.

Download (57KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».