Dissolution of impurities in sodium gadolinium molybdate NaGd(MoO4)2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Impurity defects simulation in sodium-gadolinium molybdate NaGd(MoO4)2 was carried out using a method of interatomic potentials. The dissolution energies of tri-, di- and monovalent impurities were estimated. The dependences of the dissolution energy on the ionic radius of the impurity were plotted. For heterovalent substitutions, the most energetically favorable mechanism for charge compensation has been found, both due to intrinsic crystal defects and according to the conjugate isomorphism scheme. The positions of the most probable localization of defects are determined. The effect of disordering of sodium and gadolinium ions at equivalent positions on positional differences in the energy of defects is estimated. A comparison of the solubility of impurities in NaGd(MoO4)2 and its isostructural CaMoO4 indicates that, although isovalent substitutions are energetically more favorable than heterovalent ones, the mechanism of conjugate isomorphism, which ensures electrical neutrality, can equalize these processes.

作者简介

V. Dudnikova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow

N. Eremin

Lomonosov Moscow State University

Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow

参考

  1. Майер А.А., Πровоторов М.В., Балашов В.А. // Успехи химии. 1973. Т. 42. С. 1788.
  2. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука, 1986. 173 с.
  3. Schmidt M., Heck S., Bosbach D. et al. // Dalton Trans. 2013. V. 42. P. 8387. https://doi.org/10.1039/c3dt50146a
  4. Wang P., Zhang Z., Su W. et al. // Ceram. Int. 2019. V. 45. P. 21735. https://doi.org/10.1016/j.ceramint.2019.07.174
  5. Huang J., Huang J., Lin Y. et al. // J. Lumin. 2017. V. 187. P. 235. https://doi.org/10.1016/j.jlumin.2016.11.078
  6. Guo W., Chen Y., Lin Y. et al. // J. Phys. Appl. Phys. 2008. V. 41. Р. 115409. https://doi.org/10.1088/0022-3727/41/11/115409
  7. Wu L., Chen Z., Wu Y. et al. // Cryst. Res. Technol. 2016. V. 51 (2). P. 137. https://doi.org/10.1002/crat.201500228
  8. Wang Z., Li X., Wang G. et al. // Opt. Mater. 2008. V. 30. P. 1873. https://doi.org/10.1016/j.optmat.2007.12.012
  9. Ren H., Li H., Zou Y. et al. // J. Lumin. 2022. V. 249. Р. 119034. https://doi.org/10.1016/j.jlumin.2022.119034
  10. Wang X., Chen Z., Pan S. et al. // J. Lumin. 2022. V. 252. Р. 119367. https://doi.org/10.1016/j.jlumin.2022.119367
  11. Li L., Dong D., Zhang J. et al. // Mater. Let. 2014. V. 131. P. 298. https://doi.org/10.1016/j.matlet.2014.05.205
  12. Wang H., Zhou X., Yan J. et al. // J. Lumin. 2018. V. 195. P. 170. https://doi.org/10.1016/j.jlumin.2017.10.052
  13. Vishwakarma P.K., Rai S.B., Bahadur A. // Mater. Res. Bull. 2021. V. 133. Р. 111041. https://doi.org/10.1016/j.materresbull.2020.111041
  14. Mo F., Zhou L., Pang Q. et al. // Ceram. Int. 2012. V. 38. P. 6289. http://dx.doi.org/10.1016/j.ceramint.2012.04.084
  15. Yu X., Jiang Y., Li X. et al. // CrystEngComm. 2022. V. 24. P. 805. https://doi.org/10.1039/D1CE01434J
  16. Du P., Luo L., Park H.K. et al. // Chem. Eng. J. 2016. V. 306. P. 840. https://doi.org/10.1016/j.cej.2016.08.007
  17. Gao Z., Tian B., Liu M. et al. // J. Non-Cryst. Solids. 2023. V. 603. P. 122114. https://doi.org/10.1016/j.jnoncrysol.2022.122114
  18. Yan T., Li Z., Chen S. et al. // Ceram. Int. 2023. V. 49. P. 33681. https://doi.org/10.1016/j.ceramint.2023.08.055
  19. Li A., Xu D., Tang Y. et al. // J. Lumin. 2021. V. 239. Р. 118356. https://doi.org/10.1016/j.jlumin.2021.118356
  20. Zhang L., Meng Q., Sun W. et al. // Ceram. Int. 2021. V. 47. P. 670. https://doi.org/10.1016/j.ceramint.2020.08.175
  21. Wang L., Liu S.Y., Song W.B. et al. // Acta Phys. Pol. A. 2023. V. 144. № 2. P. 87. https://doi.org/10.12693/APhysPolA.144.87
  22. Li A., Li Z., Pan L. et al. // J. Alloys Compd. 2022. V. 904. Р. 164087. https://doi.org/10.1016/j.jallcom.2022.164087
  23. Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
  24. Дудникова В.Б., Антонов Д.И., Жариков Е.В. и др. // ФТТ. 2022. Т. 64. Вып. 10. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354
  25. Bush T.S., Gale J.D., Catlow C.R.A. et al. // Mater. Chem. 1994. V. 4. P. 831. https://doi.org/10.1039/JM9940400831
  26. Дудникова В.Б., Еремин Н.Н. // Кристаллография. 2023. Т. 68. № 1. С. 11. https://doi.org/10.31857/S002347612301006X
  27. Дудникова В.Б., Еремин Н.Н. // Журн. структур. химии 2023. Т. 64. № 9. С. 17248. https://doi.org/10.26902/JSC_id117248
  28. Kröger F.A., Vink H.J. // Solid State Phys. 1956. V. 3 P. 307. https://doi.org/10.1016/S0081-1947(08)60135-6
  29. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
  30. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1938. V. 34. P. 485. https://doi.org/10.1039/TF9383400485
  31. Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. Р. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180
  32. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // ФТТ. 2019. Т. 61. Вып. 4. С. 678. https://doi.org/10.21883/FTT.2019.04.47412.311
  33. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.

版权所有 © Russian Academy of Sciences, 2024
##common.cookie##