Localization of aluminum in ZnO: Al layers during magnetron sputtering deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of aluminum localization and the mechanism of donor center formation in ZnO:Al layers synthesized by high-frequency magnetron sputtering are studied. It is shown that aluminum predominantly localizes at grain boundaries of zinc oxide in its own oxide phase. The mechanism of aluminum oxidation at grain boundaries significantly depends on the oxygen content in the working chamber: during sputtering in an atmosphere of pure argon under conditions of oxygen deficiency, aluminum oxidation occurs as a result of interaction with oxygen from the surface layer of zinc oxide crystallites, forming surface donor centers at grain boundaries. With an increase in the partial pressure of oxygen, aluminum is predominantly oxidized by oxygen from the gas atmosphere, forming its own barrier phase at grain boundaries.

Full Text

Restricted Access

About the authors

A. Sh. Asvarov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a_abduev@mail.ru
Russian Federation, Moscow

A. E. Muslimov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a_abduev@mail.ru
Russian Federation, Moscow

V. M. Kanevsky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a_abduev@mail.ru
Russian Federation, Moscow

A. K. Akhmedov

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: a_abduev@mail.ru
Russian Federation, Makhachkala

A. Kh. Abduev

The Federal State University of Education

Author for correspondence.
Email: a_abduev@mail.ru
Russian Federation, Mytishchi

Z. Kh. Kalazhokov

H. M. Berbekov Kabardino-Balkarian State University

Email: a_abduev@mail.ru
Russian Federation, Nalchik

References

  1. Boscarino S., Crupi I., Mirabella S. et al. // Physica A. 2014. V. 116. P. 1287. https://doi.org/10.1007/s00339-014-8222-9
  2. Afre R.A., Sharma N., Sharon M. et al. // Rev. Adv. Mater. Sci. 2018. V. 53. P. 79.
  3. Cohen D.J., Barnett S.A. // J. Appl. Phys. 2005. V. 98. P. 053705. https://doi.org/10.1063/1.2035898
  4. Akhmedov A., Abduev A., Murliev E. et al. // Materials. 2023. V. 16. P. 3740. https://doi.org/10.3390/ma16103740
  5. Meng F., Ge F., Chen Y. et al. // Surf. Coat. Technol. 2018. V. 365. P. 2. https://doi.org/10.1016/j.surfcoat.2018.04.013
  6. Abduev A., Akhmedov A., Asvarov A. et al. // SID Symposium Digest of Technical Papers. 2019. V. 50. P. 977. https://doi.org/10.1002/sdtp.13089
  7. Asvarov A.S., Abduev A.K., Akhmedov A.K. et al. // Materials. 2022. V. 15. P. 5862. https://doi.org/10.3390/ma15175862
  8. Ellmer K., Mientus R. // Thin Solid Films. 2008. V. 516. P. 5829. https://doi.org/10.1016/j.tsf.2007.10.082
  9. Wu Y., Giddings A.D., Verheijen M.A. et al. // Chem. Mater. 2018. V. 30. P. 1209. https://doi.org/10.1021/acs.chemmater.7b03501
  10. Jose J., Khadar M.A. // Mater. Sci. Eng. A. 2001. V. 304–306. P. 810. https://doi.org/10.1016/S0921-5093(00)01579-3
  11. Reiche M., Kittler M., Krause H.M. // Solid State Phenom. 2013. V. 205–206. P. 293. https://doi.org/10.4028/www.scientific.net/ssp.205-206.293
  12. Лашкова Н.А., Максимов А.И., Матюшкин Л.Б. и др. // Бутлеровские сообщения. 2015. Т. 42. № 6. С. 48.
  13. El-Shaarawy M.G., Khairy M., Mousa M.A. // Adv. Powder Technol. 2020. V. 31. P. 1333. https://doi.org/10.1016/j.apt.2020.01.009
  14. Liu J., Huang X., Duan J. et al. // Mater. Lett. 2005. V. 59. P. 3710. https://doi.org/10.1016/j.matlet.2005.06.043
  15. Abduev A., Akhmedov A., Asvarov A. // J. Phys. Conf. Ser. 2011. V. 291. P. 012039. https://doi.org/10.1088/1742-6596/291/1/012039
  16. Khlayboonme S.T., Thowladda W. // Mater. Res. Express. 2021. V. 8. P. 076402. https://doi.org/10.1088/2053-1591/ac113d
  17. Nasr B., Dasgupta S., Wang D. et al. // J. Appl. Phys. 2010. V. 108. P. 103721. https://doi.org/10.1063/1.3511346
  18. Novák P., Kozák T., Šutta P. et al. // Phys. Status Solidi. A. 2018. V. 215. https://doi.org/10.1002/pssa.201700951
  19. Sieber I., Wanderka N., Urban I. et al. // Thin Solid Films. 1998. V. 330. P. 108. https://doi.org/10.1016/S0040-6090(98)00608-7
  20. Bikowski A., Rengachari M., Nie M. et al. // APL Mater. 2015. V. 3. P. 060701. https://doi.org/10.1063/1.4922152
  21. Fiermans L., Vennik J., Dekeyser W. // J. Surf. Sci. 1975. V. 63. P. 390.
  22. Semiletov A.M., Chirkunov A.A., Grafov O.Y. // Coatings. 2022. V. 12. P. 1468. https://doi.org/10.3390/coatings12101468
  23. Potter D.B., Parkin I.P., Carmal C.J. // RSC Adv. 2018. V. 8. P. 33164. https://doi.org/10.1039/c8ra06417b
  24. Daza L.G., Martin-Tovar E.A., Castro-Rodriguez R. // Inorg. Organomet. Polym. 2017. V. 27. P. 1563. https://doi.org/10.1007/s10904-017-0617-6
  25. Li L., Fang L., Zhou X.J. et al. // J. Electron Spectros. Relat. Phenomena. 2009. V. 173. P. 7. https://doi.org/10.1016/j.elspec.2009.03.001
  26. Tong C., Yun J., Chen Y.-J. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 3985. https://doi.org/10.1021/acsami.5b11285
  27. Sky T.N., Johansen K.M., Venkatachalapathy V. et al. // Phys. Rev. B. 2018. V. 98. P. 245204. https://doi.org/10.1103/PhysRevB.98.245204
  28. Kim H.-K., Seong T.-Y., Kim K.-K. et al. // Jpn. J. Appl. Phys. 2004. V. 43. P. 976. https://doi.org/10.1143/JJAP.43.976
  29. Wei J., Ogawa T., Feng B et al. // Nano Lett. 2020. V. 20. P. 2530. https://doi.org/10.1021/acs.nanolett.9b05298
  30. Моррисон С. Химическая физика поверхности твердого тела. М.: Мир, 1980. 488 с.
  31. Ryabko A.A., Mazing D.S., Bobkov A.A. et al. // Phys. Solid State. 2022. V. 64. P. 1657. https://doi.org/10.21883/PSS.2022.11.54187.408

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractograms of ZnO:3%Al (a, b) and ZnO:6%Al (c, d) layers deposited at substrate temperatures of 50 (a, c) and 300°C (b, d) in the atmosphere of the working gas Ar and Ar–O2

Download (336KB)
3. Fig. 2. TEM image of a ZnO:6%Al layer deposited at a substrate temperature of 300°C

Download (248KB)
4. Fig. 3. Energy dispersion analysis data on the distribution of chemical elements near the substrate–layer interface for the ZnO:6%Al layer deposited at a substrate temperature of 300 °C

Download (106KB)
5. Fig. 4. Energy dispersion analysis data on the distribution of chemical elements in a ZnO:6%Al layer deposited at a substrate temperature of 300 °C along a line crossing the pillars parallel to the substrate

Download (185KB)
6. Fig. 5. Overview X-ray spectrum of the ZnO sample:6%Al

Download (104KB)
7. Fig. 6. Regions of the X-ray spectrum with Zn2p, Zn2p3/2 (a) and Zn LMM (b) reflexes

Download (145KB)
8. Fig. 7. Regions of the XFE spectrum with O1s (a) and Al2p (b) reflexes

Download (178KB)
9. Fig. 8. Dependences of the surface resistance RS of the ZnO:3%Al (1) and ZnO:6%Al(2) layers on the substrate temperature

Download (68KB)
10. Fig. 9. Architecture of the multilayer Al2O3/ZnO structure

Download (97KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies