HIGH-CAPACITY CALCIUM CARBONATE PARTICLES AS PH-SENSITIVE CONTAINERS FOR DOXORUBICIN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nanostructured submicron calcium carbonate particles with sizes of 500 ± 90 and 172 ± 75 nm have been synthesized by mass crystallization in aqueous solutions with addition of glycerol, as well as a mixture of polyethylene glycol, polysorbate, and a cellular medium. CaCO3 : Si : Fe nanoparticles 65 ± 15 nm in size have been obtained by template synthesis in pores of silica particles. The crystal structure and polymorphism of these particles are studied, and the influence of the size and structure of particles on the efficiency of their loading with a chemotherapy agent , as well as its release under model conditions at different рН, is determined.

About the authors

T. N. Pallaeva

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: trushina.d@mail.ru
Россия, Москва

A. V. Mikheev

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: trushina.d@mail.ru
Россия, Москва

D. N. Khmelenin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: trushina.d@mail.ru
Россия, Москва

D. A. Eurov

Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Email: trushina.d@mail.ru
Россия, Санкт-Петербург

D. A. Kurdyukov

Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Email: trushina.d@mail.ru
Россия, Санкт-Петербург

V. K. Popova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: trushina.d@mail.ru
Россия, Новосибирск

E. V. Dmitrienko

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: trushina.d@mail.ru
Россия, Новосибирск

D. B. Trushina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia

Author for correspondence.
Email: trushina.d@mail.ru
Россия, Москва; Россия, Москва

References

  1. Danhier F., Feron O., Préat V. // J. Control. Release. 2010. V. 148. № 2. P. 135. https://doi.org/10.1016/j.jconrel.2010.08.027
  2. Matsumura Y., Maeda H. // Cancer Res. 1986. V. 46. P. 6387.
  3. Pérez-Herrero E., Fernández-Medarde A. // Eur. J. Pharm. Biopharm. 2015. V. 93. P. 52. https://doi.org/10.1016/j.ejpb.2015.03.018
  4. Rodrigues C.F., Alves C.G., Lima-Sousa R. et al. // Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Elsevier. 2020. P. 283. https://doi.org/10.1016/B978-0-12-819666-3.00010-9
  5. Parra Nieto J., Del Cid M.A.G., de Cárcer I.A. et al. // Biotechnol. J. 2021. V. 16. № 2. P. 2000150. https://doi.org/10.1002/biot.202000150
  6. Danhier F. // J. Control. Release. 2016. V. 244. P. 108. https://doi.org/10.1016/j.jconrel.2016.11.015
  7. Rosenblum D., Joshi N., Tao W. et al. // Nat. Commun. 2018. V. 9. № 1. P. 1. https://doi.org/10.1038/s41467-018-03705-y
  8. Nichols J.W., Bae Y.H. // J. Control. Release. 2014. V. 190. P. 451. https://doi.org/10.1016/j.jconrel.2014.03.057
  9. Wilhelm S., Tavares A.J., Dai Q. et al. // Nat. Rev. Mater. 2016. V. 1. P. 1. https://doi.org/10.1038/natrevmats.2016.14
  10. Reshetnyak Y.K. // Clin. Cancer Res. 2015. V. 21. № 20. P. 4502. https://doi.org/10.1158/1078-0432.CCR-15-1502
  11. Nakamura J., Poologasundarampillai G., Jones J.R. et al. // J. Mater. Chem. B. 2013. V. 1. № 35. P. 4446. https://doi.org/10.1039/C3TB20589D
  12. Maleki Dizaj S., Sharifi S., Ahmadian E. et al. // Expert Opin. Drug Deliv. 2019. V. 16. № 4. P. 331. https://doi.org/10.1080/17425247.2019.1587408
  13. Zhang Y., Cai L., Li D. et al. // Nano Res. 2018. V. 11. № 9. P. 4806. https://doi.org/10.1007/s12274-018-2066-0
  14. Sudareva N.N., Popryadukhin P.V., Saprykina N.N. et al. // Cell. Ther. Transplant. 2020. V. 9. № 2. P. 13. https://doi.org/10.18620/ctt-1866-8836-2020-9-2-13-19
  15. Fu J., Leo C.P., Show P.L. // Biochem. Eng. J. 2022. P. 108446. https://doi.org/10.1016/j.bej.2022.108446
  16. Trushina D.B., Borodina T.N., Belyakov S. et al. // Mater. Today Adv. 2022. V. 14. № 2022. P. 100214. https://doi.org/10.1016/j.mtadv.2022.100214
  17. Qiu N., Yin H., Ji B. et al. // Mater. Sci. Eng. C. 2012. V. 32. № 8. P. 2634. https://doi.org/10.1016/j.msec.2012.08.026
  18. Liu S.S., Liu L.J., Xiao L.Y. et al. // J. Mater. Chem. B. 2015. V. 3. № 42. P. 8314. https://doi.org/10.1039/C5TB01692D
  19. Trushina D.B., Bukreeva T.V., Antipina M.N. // Cryst. Growth Des. 2016. V. 16. № 3. P. 1311. https://doi.org/10.1021/acs.cgd.5b01422
  20. Wang A., Yang Y., Zhang X. et al. // Chempluschem. 2016. V. 81. № 2. P. 194. https://doi.org/10.1002/cplu.201500515
  21. Choukrani G., Maharjan B., Park C.H. et al. // Mater. Sci. Eng. C. 2020. V. 106. P. 110226. https://doi.org/10.1016/j.msec.2019.110226
  22. Som A., Raliya R., Tian L. et al. // Nanoscale. Royal Soc. Chem. 2016. V. 8. № 25. P. 12639. https://doi.org/10.1039/C5NR06162H
  23. Som A., Raliya R., Paranandi K. et al. // Nanomedicine. 2019. V. 14. № 2. P. 169. https://doi.org/10.2217/nnm-2018-0302
  24. Lam S.F., Bishop K.W., Mintz R. et al. // Sci. Rep. 2021. V. 11. № 1. P. 9246. https://doi.org/10.1038/s41598-021-88687-6
  25. Popova V., Poletaeva Y., Pyshnaya I. et al. // Nanomaterials. 2021. V. 11. № 11. P. 2794. https://doi.org/10.3390/nano11112794
  26. Eurov D.A., Kurdyukov D.A., Boitsov V.M. et al. // Microporous Mesoporous Mater. 2022. V. 333. P. 111762. https://doi.org/10.1016/j.micromeso.2022.111762
  27. Trofimova E.Y., Kurdyukov D.A., Yakovlev S.A. et al. // Nanotechnology. 2013. V. 24. № 15. P. 155601. https://doi.org/10.1088/0957-4484/24/15/155601
  28. Kamhi S.R. // Acta Cryst. 1963. V. 16. № 8. P. 770. https://doi.org/10.1107/S0365110X63002000
  29. Pokroy B., Kabalah-Amitai L., Polishchuk I. et al. // Chem. Mater. 2015. V. 27. № 19. P. 6516. https://doi.org/10.1021/acs.chemmater.5b01542
  30. Bragg W.L. // Proc. R. Soc. London. A. 1914. V. 89. № 613. P. 468. https://doi.org/10.1098/rspa.1914.0015
  31. Трушина Д.Б., Бородина Т.Н., Сульянов С.Н. и др. // Кристаллография. 2018. Т. 63. № 6. С. 956. https://doi.org/10.1134/S0023476118060309
  32. Borodina T., Marchenko I., Trushina D. et al. // J. Pharm. Pharmacol. 2018. V. 70. P. 1164. https://doi.org/10.1111/jphp.12958
  33. Borodina T.N., Trushina D.B., Marchenko I.V. et al. // BioNanoSci. 2016. V. 6. № 3. P. 261. https://doi.org/10.1007/s12668-016-0212-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (683KB)
3.

Download (850KB)
4.

Download (656KB)
5.

Download (81KB)

Copyright (c) 2023 Т.Н. Паллаева, А.В. Михеев, Д.Н. Хмеленин, Д.А. Еуров, Д.А. Курдюков, В.К. Попова, Е.В. Дмитриенко, Д.Б. Трушина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies