STRUCTURAL AND PHASE TRANSFORMATIONS ON THE SURFACE OF SUPERPROTONIC CRYSTALS OF ACID SALTS OF POTASSIUM-AMMONIUM SULFATE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of comprehensive studies of structural and phase transformations in
(K0.43(NH4)0.57)3H(SO4)2 superprotonic crystals under the influence of atmospheric moisture are presented. The real structure, composition, and thickness of the modified surface layers have been analyzed using scanning electron microscopy and X-ray microscopy. The local characteristics of nanostructures, formed on the freshly cleaved (001) crystal surface subjected to the electrostatic effect, have been investigated by conductive atomic force microscopy. A correlation has been established between the time changes in the structure, composition, and magnitude of the electrostatic potential of the crystal surface. The results are considered in the context of evaluation of the chemical stability of the samples and searching for the ways to optimize the compositions and functional properties of superprotonic compounds.

作者简介

R. Gainutdinov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: alla@crys.ras.ru
Россия, Москва

A. Tolstikhina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: alla@crys.ras.ru
Россия, Москва

E. Selezneva

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: alla@crys.ras.ru
Россия, Москва

I. Makarova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: alla@crys.ras.ru
Россия, Москва

A. Vasiliev

National Research Centre “Kurchatov Institute,” Moscow, 123182 Russia; Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Moscow Institute of Physics and Technology, Moscow oblast, Dolgoprudny, 141701 Russia

编辑信件的主要联系方式.
Email: a.vasiliev56@gmail.com
Россия, Москва; Россия, Москва; Россия, Москва

参考

  1. Selezneva E.V., Makarova I.P., Malyshkina I.A. et al. // Acta Cryst. B. 2017. V. 73. P. 1105. https://doi.org/10.1107/S2052520617012847
  2. Малышкина И.А., Селезнева Е.В., Макарова И.П., Гаврилова Н.Д. // Вестн. МГУ. Сер. 3. Физика. Астрономия. 2019. № 4. С. 52. https://doi.org/10.3103/S002713491904012X
  3. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В., Макарова И.П. // Кристаллография. 2022. Т. 67. № 3. С. 442. https://doi.org/10.31857/S0023476122030080
  4. Norby T. // Nature. 2001. V. 410. № 6831. P. 877.
  5. Баранов А.И. // Кристаллография. 2003. Т. 48. № 6. С. 1081.
  6. Ponomareva V., Lavrova G. // J. Solid State Electrochem. 2011. V. 15. P. 213. https://doi.org/10.1007/s10008-010-1227-1
  7. Merle R.B., Chisholm C.R.I., Boysen D.A., Haile S.M. // Energy Fuels. 2003. V. 17. P. 210. https://doi.org/10.1021/ef0201174
  8. Ikeda A. // Thesis by Ayako Ikeda. California: California Institute of Technology Pasadena, 2013. P. 6.
  9. Макарова И.П., Черная Т.С., Филаретов А.А. и др. // Кристаллография. 2010. Т. 55. № 3. С. 429. https://doi.org/10.1134/S1063774510030065
  10. Gainutdinov R., Selezneva E., Makarova I. et al. // Surf. Interfaces. 2021. V. 23. P. 100952 (1-9). https://doi.org/10.1016/j.surfin.2021.100952
  11. Na Ch., T. Kendall T.A., Martin S.T. // Environ. Sci. Technol. 2007. V. 41. P. 6491.
  12. Yang Sh., Dammer S.M., Bremond N. et al. // Langmuir. 2007. V. 23. P. 7072. https://doi.org/10.1021/la070004i
  13. Zhang X.H., Quinn A., Ducker W.A. // Langmuir. 2008. V. 24. P. 4756. https://doi.org/10.1021/la703475q
  14. An H., Liu G., Craig V.S.J. // Adv. Colloid Interface Sci. 2015. V. 222. P. 9. https://doi.org/10.1016/j.cis.2014.07.008
  15. Lohse D., Zhang X. // Rev. Mod. Phys. 2015. V. 87. P. 981. https://doi.org/10.1103/RevModPhys.87.981
  16. Kendall T.A., Na Ch., Jun Y.-Sh., Martin S.T. // Langmuir. 2008. V. 24. P. 2519. https://doi.org./https://doi.org/10.1021/la702350p
  17. Na Ch., Tang Y., Wang H., Martin S.T. // Langmuir. 2015. V. 31. P. 2366. https://doi.org/10.1021/la504465y
  18. Gouveia R.F., Bernardes J.S., Ducati T.R.D., Galembeck F. // Anal. Chem. 2012. V. 84. № 23. P. 10191. https://doi.org/10.1021/ac3009753
  19. Walker S.M., Marcano M.C., Kim S. et al. // J. Phys. Chem. C. 2017. V. 121. № 50. P. 28017. https://doi.org/10.1021/acs.jpcc.7b09565
  20. Revilla R.I., Terryn H., De Graeve I. // Electrochem. Commun. 2018. V. 93. P. 162. https://doi.org/10.1016/j.elecom.2018.07.010
  21. Zhu X., Revilla R.I., Hubin A. // J. Phys. Chem. C. 2018. V. 122. № 50. P. 28556. https://doi.org/10.1021/acs.jpcc.8b10364

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (23KB)
4.

下载 (1MB)
5.

下载 (1MB)

版权所有 © Р.В. Гайнутдинов, А.Л. Толстихина, Е.В. Селезнева, И.П. Макарова, А.Л. Васильев, 2023

##common.cookie##