IONIC CONDUCTIVITY AND THERMAL STABILITY OF BiF3 CRYSTALS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temperature dependence of the ionic conductivity σdc(T) and thermal stability of BiF3 crystals with the structure of orthorhombic β-YF3 (sp. gr. Pnma, a = 6.5620(1) Å, b = 7.0144(1) Å, c = 4.8410(1) Å, V/Z = 55.71 Å3), grown from melt by the vertical directional crystallization technique have been investigated. The electrical characteristics of BiF3 are obtained from impedance measurements in the temperature range of 360−540 K. The σdc value at T = 500 K and the ion transport activation enthalpy ΔHa are found to be 2.5 × 10−5 S/cm and 0.48 ± 0.05 eV, respectively. The ΔHa value for the crystal studied is smaller by a factor of 1.4 in comparison with the isostructural rare-earth (Tb, Ho, Er, Y) trifluorides, which is due to the high electronic polarizability and large ionic radius of Bi3+ cations. It was found that BiF3 crystals are thermally stable at temperatures up to 550−600 K; at higher temperatures degradation was observed due to the sublimation and pyrohydrolysis of this material. The formation of oxofluoride phases is responsible for the detected conductivity jump in the dependence σdc(T) at T ∼ 600 K.

Sobre autores

N. Sorokin

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: nsorokin1@yandex.ru
Россия, Москва

D. Karimov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Autor responsável pela correspondência
Email: dnkarimov@gmail.com
Россия, Москва

Bibliografia

  1. Кавун В.Я., Уваров Н.Ф., Слободюк А.Б. и др. // Изв. РАН. Сер. хим. 2022. № 6. С. 1059.
  2. Слободюк А.Б., Полянцев М.М., Гончарук В.К., Кавун В.Я. // Вестн. ДВО РАН. 2021. № 5. С. 95.
  3. Сорокин Н.И., Соболев Б.П. // Электрохимия. 2011. Т. 47. № 1. С. 118.
  4. Baumgartner J.F., Krumeich F., Worle M. et al. // Commun. Chem. 2022. V. 5. P. 6. https://doi.org/10.1038/s42004-021-00622-y
  5. Liu T., Peng N., Zhang X. et al. // Energy Storage Mater. 2021. V. 42. P. 42. https://doi.org/10.1016/j.ensm.2019.03.028
  6. Xiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. № 11. P. 2823. https://doi.org/10.1016/j.joule.2021.09.016
  7. Konishi H., Minato T., Abe T., Ogumi Z. // ChemistrySelect. 2020. V. 5. № 21. P. 4943. https://doi.org/10.1002/slct.202001163
  8. Gschwind F., Rodriguez-Garcia G., Sandbeck D.J.S. et al. // J. Fluor. Chem. 2016. V. 182. P. 76. https://doi.org/10.1016/j.jfluchem.2015.12.002
  9. Greis O., Martinez-Ripoll M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 1. S. 105. https://doi.org/10.1002/zaac.19774360112
  10. Yang Z., Pei Y., Wang X. et al. // Comput. Mater. Sci. 2013. V. 68. P. 117. https://doi.org/10.1016/j.commatsci.2012.10.003
  11. Kim K.J., Yoshimura M., Somiya S. // Solid State Ionics. 1991. V. 44. № 3–4. P. 281. https://doi.org/10.1016/0167-2738(91)90019-8
  12. Croatto U. // Z. Anorg. Allg. Chem. 1949. B. 258. № 3–5. S. 198. https://doi.org/10.1002/zaac.19492580310
  13. Ardashnikova E.I., Prituzhalov V.A., Kutsenok I.V. // Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids / Ed. Tressaud A. Chichester: John Wiley, 2010. P. 423. https://doi.org/10.1002/9780470660768.ch14
  14. Ардашникова Е.И., Борзенкова М.П., Калинченко Ф.В., Новоселова А.В. // Журн. неорган. химии. 1981. Т. 26. № 7. С. 1727.
  15. Nakamura G.H.G., Klimm D., Baldochi S.L. // Thermochim. Acta. 2013. V. 551. P. 131. https://doi.org/10.1016/j.tca.2012.10.005
  16. Pastor R.C., Harrington J.A., Gorre L.E., Chew R.K. // Mater. Res. Bull. 1979. V. 14. № 4. P. 543. https://doi.org/10.1016/0025-5408(79)90198-3
  17. Shafer M.W., Chandrashekhar G.N., Figat R.A. // Solid State Ionics. 1981. V. 5. P. 633. https://doi.org/10.1016/0167-2738(81)90334-9
  18. Spedding F.H., Beaudry B.J., Henderson D.C., Moorman J. // J. Chem. Phys. 1973. V. 60. № 4. P. 1578. https://doi.org/10.1063/1.1681233
  19. Greis O., Cader M.S.R. // Thermochim. Acta. 1985. V. 87. № 1. P. 145. https://doi.org/10.1016/0040-6031(85)85329-6
  20. Thoma R.E., Brunton G.D. // Inorg. Chem. 1966. V. 5. № 11. P. 1937. https://doi.org/10.1021/ic50045a022
  21. Ардашникова Е.И., Борзенкова М.П., Новоселова А.В., Свищев И.М. // Журн. неорган. химии. 1986. Т. 31. № 2. С. 513.
  22. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 2. СПб.: Изд-во СПбГУ, 2010. 1000 с.
  23. Каримов Д.Н., Бучинская И.И., Дымшиц Ю.М. и др. // Патент RU 2778808, 25.08.2022.
  24. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
  25. Калинченко Ф.В. // //Дисс. канд. хим. наук. М.: МГУ. 1982. 203 с.
  26. Cheetham A.B., Norman N. // Acta Chem. Scand. A. 1974. V. 28. P. 55.
  27. Виноградова-Жаброва А.С., Сивцова О.В., Патрушева В.Г., Бамбуров В.Г. // Журн. неорган. химии. 2001. Т. 46. № 2. С. 274.
  28. Matar S., Reau J.-M., Rabardel L. et al. // Solid State Ionics. 1983. V. 11. № 1. P. 77. https://doi.org/10.1016/0167-2738(83)90066-8
  29. Сорокин Н.И., Каримов Д.Н., Соболев Б.П. // Кристаллография. 2019. Т. 64. № 4. С. 596. https://doi.org/10.1134/S0023476119040222
  30. Сорокин Н.И., Соболев Б.П., Брайтер М. // ФТТ. 2002. Т. 44. № 2. С. 272.
  31. Trnovcova V., Fedorov P.P., Valkovskii M.D. et al. // Ionics. 1997. V. 3. P. 313. https://doi.org/10.1007/BF02375637
  32. Трновцова В., Федоров П.П., Соболев Б.П. и др. // Кристаллография. 1996. Т. 41. № 4. С. 731.
  33. Greis O., Petzel T. // Z. Anorg. Allg. Chem. 1974. B. 403. № 1. S. 1. https://doi.org/10.1002/zaac.19744030102
  34. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S056773947600155

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (809KB)
3.

Baixar (109KB)

Declaração de direitos autorais © Н.И. Сорокин, Д.Н. Каримов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies