LUMINESCENCE OF TWO-DIMENSIONAL ZnO NANOSTRUCTURES: NANOWALLS, NANOSHEETS, NANOCOMBS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Preliminary comparative studies of the photoluminescent properties of two-dimensional ZnO nanostructures with morphology of nanowalls, nanosheets, and nanocombs, fabricated by gas-transport synthesis, have been performed. All structures exhibited near-band-edge (NBE) UV emission of the same order of intensity. Unlike nanocombs, whose spectrum contains a comparatively strong green luminescence band, nanowalls and nanosheets are characterized by a large ratio of the UV and visible components. This distinction is presumably due to the difference in the mechanisms of structure formation: nanowalls and nanosheets are formed according to the vapor–liquid–solid mechanism, whereas nanocombs grow according to the vapor–solid mechanism

作者简介

A. Tarasov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: tarasov.a@crys.ras.ru
Россия, Москва

L. Zadorozhnaya

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: tarasov.a@crys.ras.ru
Россия, Москва

B. Nabatov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: tarasov.a@crys.ras.ru
Россия, Москва

I. Volchkov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: tarasov.a@crys.ras.ru
Россия, Москва

V. Kanevsky

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

编辑信件的主要联系方式.
Email: tarasov.a@crys.ras.ru
Россия, Москва

参考

  1. Leonardi S.G. // Chemosensors. 2017. V. 5 (2). P. 17. https://doi.org/10.3390/chemosensors5020017
  2. Pellegrino D., Franzò G., Strano V. et al. // Chemosensors. 2019. V. 7 (2). P. 18. https://doi.org/10.3390/chemosensors7020018
  3. Verma A., Chaudhary P., Tripathi R.K., Yadav B.C. // Sens. Actuators A: Phys. 2021. V. 321. P. 112600. https://doi.org/10.1016/j.sna.2021.112600
  4. Ополченцев А.М., Задорожная Л.А., Брискина Ч.М. и др. // Оптика и спектроскопия. 2018. Т. 125. С. 501. https://doi.org/10.21883/OS.2018.10.46702.142-18
  5. Tarasov A.P., Briskina Ch.M., Markushev V.M. et al. // Opt. Mater. 2020. V. 102. P. 109823. https://doi.org/10.1016/j.optmat.2020.109823
  6. Xie J.Q., Dong J.W., Osinsky A. et al. // MRS Online Proceedings Library. 2005. V. 891. P. 1001. https://doi.org/10.1557/proc-0891-ee10-01
  7. Muslimov A.E., Tarasov A.P., Kanevsky V.M. // Materials. 2022. V. 15. P. 6409. https://doi.org/10.3390/ma15186409
  8. Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
  9. Тарасов А.П., Набатов Б.В., Задорожная Л.А. и др. // Кристаллография. 2022. Т. 67. № 6. С. 943. https://doi.org/10.31857/S0023476122060261
  10. Čížek J., Valenta J., Hruška P. et al. // Appl. Phys. Lett. 2015. V. 106 (25). P. 251902. https://doi.org/10.1063/1.4922944
  11. Bandopadhyay K., Mitra J. // RSC Adv. 2015. V. 5 (30). P. 23540. https://doi.org/10.1039/C5RA00355E
  12. Редькин А.Н., Маковей З.И., Грузинцев А.Н. и др. // Неорган. материалы. 2007. Т. 43. С. 301.
  13. Редькин А.Н., Маковей З.И., Грузинцев А.Н. и др. // Неорган. материалы. 2009. Т. 45. Вып. 11. С. 1330.
  14. Kim H.J., Sung K., An K.S. et al. // J. Mater. Chem. 2004. V. 14. P. 3396. https://doi.org/10.1039/B409890K
  15. Тарасов А.П., Веневцев И.Д., Муслимов А.Э. и др. // Квантовая электроника. 2021. Т. 51. С. 366.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (2MB)
3.

下载 (75KB)

版权所有 © А.П. Тарасов, Л.А. Задорожная, Б.В. Набатов, И.С. Волчков, В.М. Каневский, 2023

##common.cookie##