STRUCTURAL BIOINFORMATICS STUDY OF THE STRUCTURAL BASIS OF SUBSTRATE SPECIFICITY OF PURINE NUCLEOSIDE PHOSPHORYLASE FROM THERMUS THERMOPHILUS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Molecular dynamics simulations were performed for wild-type purine nucleoside phosphorylase in complexes with two substrates (adenosine and guanosine). The MD simulations were also performed for the mutant form of the enzyme with the same substrates. The free energy changes upon the formation of the complexes were evaluated from the molecular dynamics trajectories by the MM-GBSA method.

作者简介

I. Garipov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: ildar.garipov.f@gmail.com
Россия, Москва

V. Timofeev

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia; National Research Centre “Kurchatov Institute,” Moscow, 123182 Russia

Email: ildar.garipov.f@gmail.com
Россия, Москва; Россия, Москва

E. Zayats

Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia

Email: ildar.garipov.f@gmail.com
Россия, Москва

Yu. Abramchikc

Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia

Email: ildar.garipov.f@gmail.com
Россия, Москва

M. Kostromina

Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia

Email: ildar.garipov.f@gmail.com
Россия, Москва

I. Konstantinova

Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia

Email: ildar.garipov.f@gmail.com
Россия, Москва

R. Esipov

Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia

编辑信件的主要联系方式.
Email: ildar.garipov.f@gmail.com
Россия, Москва

参考

  1. Timofeev V.I., Fateev I.V., Kostromina M.A. et al. // J. Biomol. Struct. Dyn. 2020. V. 40. P. 1. https://doi.org/10.1080/07391102.2020.1848628
  2. Tomoike F., Kuramitsu S., Masui R. // Extremophiles. 2013. V. 17. P. 505. https://doi.org/10.1007/s00792-013-0535-7
  3. Погосян Л.Г., Акопян Ж.И. // Биомедицинская химия. 2013. Т. 59. № 5. С. 483. https://doi.org/10.18097/pbmc20135905483
  4. Salomon-Ferrer R., Case D.A., Walker R.C. // WIREs Comput. Mol. Sci. 2013. V. 3. P. 198. https://doi.org/10.1002/wcms.1121
  5. Case D.A., Cheatham T.E., III, Darden T. et al. // J. Comput. Chem. 2005. V. 26. P. 1668. https://doi.org/10.1002/jcc.20290
  6. Maier J.A., Martinez C., Kasavajhala K. et al. // J. Chem. Theory Comput. 2015. V. 11. P. 3696. https://doi.org/10.1021/acs.jctc.5b00255
  7. Salomon-Ferrer R., Goetz A.W., Poole D. et al. // J. Chem. Theory Comput. 2013. V. 9. P. 3878. https://doi.org/10.1021/ct400314y
  8. Jorgensen W. L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926. https://doi.org/10.1063/1.445869
  9. Allen M.P., Tildesley D.J. Computer simulation of liquids. New York: Oxford university press, 1991. https://doi.org/10.2307/2938686
  10. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
  11. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089. https://doi.org/10.1063/1.464397
  12. Kollman P.A., Massova I., Reyes C. et al. // Acc. Chem. Res. 2000. V. 33. P. 889. https://doi.org/10.1021/ar000033j
  13. Srinivasan J., Trevathan M.W., Beroza P. et al. // Theor. Chem. Acc. 1999. V. 101. P. 426. https://doi.org/10.1007/s002140050460
  14. Miller B.R., McGee T.D., Swails J.M. et al. // J. Chemical Theory and Computation. 2012. V. 8. P. 3314. https://doi.org/10.1021/ct300418h
  15. Onufriev A., Bashford D., Case D.A. // Proteins. 2004. V. 55. P. 383. https://doi.org/10.1002/prot.20033
  16. Schrödinger L.L.C. The PyMOL Molecular Graphics System, Version 2.0
  17. Mikhailopulo I.A., Miroshnikov A.I. // Acta Naturae. 2010. V. 2. P. 36. https://doi.org/10.32607/20758251-2017-9-2-47-58
  18. Fateev I.V., Kostromina M.A., Abramchik Y.A. et al. // Biomolecules. 2021. V. 11. P. 586. https://doi.org/10.3390/biom11040586
  19. Roy B., Depaix A., Périgaud C. et al. // Chem. Rev. 2016. V. 116. P. 7854. https://doi.org/10.1021/acs.chemrev.6b00174
  20. Almendros M., Berenguer J., Sinisterra J.V. // Appl. Environmental Microbiology. 2012. V. 78. P. 3128. https://doi.org/10.1128/AEM.07605-11
  21. Fateev I.V., Kharitonova M.I., Antonov K.V. et al. // Chemistry. 2015. V. 21. P. 13401. https://doi.org/10.1002/chem.201501334

补充文件

附件文件
动作
1. JATS XML
2.

下载 (43KB)
3.

下载 (783KB)
4.

下载 (216KB)
5.

下载 (260KB)
6.

下载 (380KB)
7.

下载 (286KB)
8.

下载 (326KB)
9.

下载 (434KB)

版权所有 © И.Ф. Гарипов, В.И. Тимофеев, Е.А. Заяц, Ю.А. Абрамчик, М.А. Костромина, И.Д. Константинова, Р.С. Есипов, 2023

##common.cookie##