STRUCTURAL COMPLEXITY OF MOLECULAR, CHAIN, AND LAYERED CRYSTAL STRUCTURES OF NATURAL AND SYNTHETIC ARSENIC SULFIDES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A ladder-wise calculation scheme has been developed for the structural complexity of heterodesmic crystal structures, with crystal interpreted as a system of contacting molecules, chains, and layers. In the last stage of ladder-wise calculation the structural complexity of the main motif is summed with the complexity of the contacts beyond the main motif in correspondence with the strong additivity rule. The application potential of the scheme is demonstrated, and the calculation results for the crystal structures of natural and synthetic arsenic sulfides are presented. The coordination of molecules and chains that is necessary for calculating the complexity of contacts beyond the main motif is determined by the method of Voronoi–Dirichlet polyhedra.

作者简介

D. Banaru

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119334 Russia

Email: banaru@geokhi.ru
Россия, Москва

S. Aksenov

Kola Science Centre, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209 Russia

Email: aks.crys@gmail.com
Россия, Апатиты

N. Yamnova

Moscow State University, Moscow, 119991 Russia

Email: aks.crys@gmail.com
Россия, Москва

A. Banaru

Kola Science Centre, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209 Russia; Moscow State University, Moscow, 119991 Russia

编辑信件的主要联系方式.
Email: aks.crys@gmail.com
Россия, Апатиты; Россия, Москва

参考

  1. Banaru A.M., Aksenov S.M., Krivovichev S.V. // Symmetry (Basel). 2021. V. 13. P. 1399. https://doi.org/10.3390/sym13081399
  2. Krivovichev S.V. // Angew. Chemie – Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
  3. Batsanov A.S. // Acta Cryst. E. 2018. V. 74. P. 570. https://doi.org/10.1107/S2056989018005339
  4. Spackman M.A., Jayatilaka D. // CrystEngCommun. 2009. V. 11. P. 19. https://doi.org/10.1039/B818330A
  5. Blatov V.A., Shevchenko A.P., Serenzhkin V.N. // Acta Cryst. A. 1995. V. 51. P. 909. https://doi.org/10.1107/S0108767395006799
  6. Blatov V.A. // Cryst. Rev. 2004. V. 10. P. 249. https://doi.org/10.1080/08893110412331323170
  7. Shevchenko A.P., Blatov V.A. // Struct. Chem. 2021. V. 32. P. 507. https://doi.org/10.1007/s11224-020-01724-4
  8. Banaru A.M., Banaru D.A. // J. Struct. Chem. 2020. V. 61. P. 1485. https://doi.org/10.1134/S0022476620100017
  9. Sabirov D.S., Shepelevich I.S. // Entropy. 2021. V. 23. https://doi.org/10.3390/e23101240
  10. Hornfeck W. // Acta Cryst. A. 2020. V. 76. P. 534. https://doi.org/10.1107/S2053273320006634
  11. Banaru A.M., Aksenov S.M. // Symmetry (Basel). 2022. V. 14. P. 220. https://doi.org/10.3390/sym14020220
  12. Banaru D.A., Banaru A.M., Aksenov S.M. // J. Struct. Chem. 2022. V. 63. https://doi.org/10.26902/JSC_id96300
  13. Lloyd S. // IEEE Control Syst. Mag. 2001. V. 21. P. 7. https://doi.org/10.1109/MCS.2001.939938
  14. Nagaraj N., Balasubramanian K. // Eur. Phys. J. Spec. Top. 2017. V. 226. P. 3251. https://doi.org/10.1140/epjst/e2016-60347-2
  15. Zefirov Y.V., Zorky P.M. // Russ. Chem. Rev. 1995. V. 64. P. 415. https://doi.org/10.1070/rc1995v064n05abeh000157
  16. Bader R.F.W. // Acc. Chem. Res. 1985. V. 18. P. 9. https://doi.org/10.1021/ar00109a003
  17. Jabłoński M. // ChemistryOpen. 2019. V. 8. P. 497. https://doi.org/https://doi.org/10.1002/open.201900109
  18. Banaru A.M. // Moscow Univ. Chem. Bull. 2019. V. 74. P. 101. https://doi.org/10.3103/S0027131419030039
  19. van Eijck B.P., Kroon J. // Acta Cryst. B. 2000. V. 56. P. 535. https://doi.org/10.1107/S0108768100000276
  20. Banaru A.M. // Moscow Univ. Chem. Bull. 2009. V. 64. P. 80. https://doi.org/10.3103/S0027131409020023
  21. Belsky V.K., Zorky P.M. // Acta Cryst. A. 1977. V. 33. P. 1004.
  22. Talis A.L., Everstov A.A., Kraposhin V.S., Simich-Lafitskii N.D. // Met. Sci. Heat Treat. 2021. V. 62. P. 725. https://doi.org/10.1007/s11041-021-00629-1
  23. Talis A.L., Kraposhin V.S., Arestov V. // Met. Sci. Heat Treat. 2022. V. 63. P. 618. https://doi.org/10.1007/s11041-022-00738-5
  24. Talis A.L., Kraposhin V.S., Everstov A.A. // Met. Sci. Heat Treat. 2022. V. 64. P. 338. https://doi.org/10.1007/s11041-022-00811-z
  25. Maleev A.V., Gevorgyan A.A., Potekhin K.A. // J. Struct. Chem. 2018. V. 59. P. 455. https://doi.org/10.1134/S0022476618020294
  26. Mackenzie C.F., Spackman P.R., Jayatilaka D., Spackman M.A. // IUCrJ. 2017. V. 4. P. 575. https://doi.org/10.1107/S205225251700848X
  27. Lord E.A., Banaru A.M. // Moscow Univ. Chem. Bull. 2012. V. 67. P. 50. https://doi.org/10.3103/S0027131412020034
  28. Bonazzi P., Bindi L. // Z. Krist. - Cryst. Mater. 2008. V. 223. P. 132. 10.1524/zkri.2008.0011' target='_blank'>https://doi.org/doi: 10.1524/zkri.2008.0011
  29. Gibbs G.V., Wallace A.F., Downs R.T. et al. // Phys. Chem. Mineral. 2011. V. 38. P. 267. https://doi.org/10.1007/s00269-010-0402-3
  30. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
  31. O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. P. 1782. https://doi.org/10.1021/ar800124u
  32. The Samara Topological Data Center “TopCryst,” available at https://topcryst.com/, n.d.
  33. Zorky P.M. // J. Mol. Struct. 1996. V. 374. P. 9.
  34. Madelung O., Rössler U., Schulz M. 2010 http//www.springermaterials.com
  35. Kyono A. // Am. Mineral. 2009. V. 94. P. 451. 10.2138/am.2009.3075' target='_blank'>https://doi.org/doi: 10.2138/am.2009.3075
  36. Lepore G.O., Ballaran T.B., Nestola F. et al. // Mineral. Mag. 2012. V. 76. P. 963. https://doi.org/10.1180/minmag.2012.076.4.12
  37. Kutoglu A. // Z. Anorg. Allg. Chem. 1976. V. 419. P. 176. https://doi.org/https://doi.org/10.1002/zaac.19764190211
  38. Bonazzi P., Menchetti S., Pratesi G. // Am. Mineral. 1995. V. 80. P. 400. https://doi.org/10.2138/am-1995-3-422
  39. Bindi L., Popova V., Bonazzi P. // Can. Mineral. 2003. V. 41. P. 1463. https://doi.org/10.2113/gscanmin.41.6.1463
  40. Bindi L., Bonazzi P. // Am. Mineral. 2007. V. 92. P. 617. 10.2138/am.2007.2332' target='_blank'>https://doi.org/doi: 10.2138/am.2007.2332
  41. Pratesi G., Zoppi M. // Am. Mineral. 2015. V. 100. P. 1222. 10.2138/am-2015-5045' target='_blank'>https://doi.org/doi: 10.2138/am-2015-5045
  42. Gavezzotti A., Demartin F., Castellano C., Campostrini I. // Phys. Chem. Miner. 2013. V. 40. P. 175. https://doi.org/10.1007/s00269-012-0559-z
  43. Bonazzi P., Lepore G.O., Bindi L. // Eur. J. Mineral. 2016. V. 28. P. 147. https://doi.org/10.1127/ejm/2015/0027-2474
  44. Mullen D.J.E., Nowacki W. // Z. Krist. 1972. B. 136. S. 48. 10.1524/zkri.1972.136.1-2.48' target='_blank'>https://doi.org/doi: 10.1524/zkri.1972.136.1-2.48
  45. Brazhkin V.V., Bolotina N.B., Dyuzheva T.I. et al. // CrystEngCommun. 2011. V. 13. P. 2599. https://doi.org/10.1039/C0CE00861C
  46. Bolotina N.B., Brazhkin V.V., Dyuzheva T.I. et al. // JETP Lett. 2014. V. 98. P. 539. https://doi.org/10.1134/S0021364013220025
  47. Siidra O.I., Zenko D.S., Krivovichev S. V // Am. Mineral. 2014. V. 99. P. 817.
  48. Aroyo M.I., Perez-Mato J.M., Orobengoa D. et al. // Bulg. Chem. Commun. 2011. V. 43. P. 183.
  49. McKinnon J.J., Mitchell A.S., Spackman M.A. // Chem. – A Eur. J. 1998. V. 4. P. 2136. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
  50. Mckinnon J.J., Mark A., Anthony S. // Acta Cryst. B. 2004. V. 60. P. 627. https://doi.org/10.1107/S0108768104020300
  51. Meyer A.Y. // Chem. Soc. Rev. 1986. V. 15. P. 449. https://doi.org/10.1039/CS9861500449
  52. Jelsch C., Ejsmont K., Huder L. // IUCrJ. 2014. V. 1. P. 119. https://doi.org/10.1107/S2052252514003327
  53. O’Keeffe M., Treacy M.M.J. // Symmetry (Basel). 2022. V. 14. P. 822. https://doi.org/10.3390/sym14040822
  54. Shpotyuk O., Hyla M., Shpotyuk Y. et al. // Comput. Mater. Sci. 2021. V. 198. P. 110715. https://doi.org/https://doi.org/10.1016/j.commatsci.2021.110715
  55. Pidcock E., Motherwell W.D.S., Cole J.C. // Acta Cryst. B. 2003. V. 59. P. 634. https://doi.org/10.1107/S0108768103012278
  56. Carugo O., Blatova O.A., Medrish E.O. et al. // Sci. Rep. 2017. V. 7. P. 1. https://doi.org/10.1038/s41598-017-12699-4
  57. Eon J.G. // Acta Cryst. A. 2016. V. 72. P. 376. https://doi.org/10.1107/S2053273316003867
  58. Krivovichev S.V. // Acta Cryst. B. 2016. V. 72. P. 274. https://doi.org/10.1107/s205252061501906x

补充文件

附件文件
动作
1. JATS XML
2.

下载 (223KB)
3.

下载 (805KB)
4.

下载 (940KB)
5.

下载 (20KB)
6.

下载 (533KB)
7.

下载 (59KB)
8.

下载 (27KB)
9.

下载 (211KB)
10.

下载 (793KB)
11.

下载 (756KB)

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».