COMPARATIVE X-RAY DIFFRACTOMETRY OF THE DEFECT STRUCTURE OF ZnO EPITAXIAL FILMS DEPOSITED BY MAGNETRON SPUTTERING ON C-PLANE Al2O3 SUBSTRATES IN INHOMOGENEOUS ELECTRIC FIELD

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studying the specific features of the growth of zinc oxide films formed on sapphire substrates by magnetron sputtering in an inhomogeneous electric field are presented. The films have been analyzed by high-resolution X-ray diffractometry, pole figure technique, and electron microscopy. A sequence of changes in the lateral structure with an increase in the film thickness, which depends also on the local potential, is revealed. Thus, regions with a higher surface potential correspond to the ZnOá10 0ñ(0001)||Al2O3á11 0ñ(0001) epitaxial ratio with the least lattice mismatch.

Sobre autores

Yu. Volkovsky

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: irlandez08@yandex.ru
Россия, Москва

V. Zhernova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: irlandez08@yandex.ru
Россия, Москва

M. Folomeshkin

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: folmaxim@gmail.com
Россия, Москва; Россия, Москва

P. Prosekov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: irlandez08@yandex.ru
Россия, Москва

A. Muslimov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: amuslimov@mail.ru
Россия, Москва

A. Butashin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: irlandez08@yandex.ru
Россия, Москва

A. Ismailov

Dagestan State University, Makhachkala, Republic of Dagestan, 36700 Russia

Email: irlandez08@yandex.ru
Россия, Республика Дагестан, Махачкала

Yu/ Grigoriev

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: irlandez08@yandex.ru
Россия, Москва

Yu. Pisarevsky

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: irlandez08@yandex.ru
Россия, Москва

V. Kanevsky

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; National Research Centre “Kurchatov Institute,” Moscow, 123182 Russia

Autor responsável pela correspondência
Email: irlandez08@yandex.ru
Россия, Москва; Россия, Москва

Bibliografia

  1. Izaki M., Omi T. // Appl. Phys. Lett. 1996. V. 68. № 17. P. 2439. https://doi.org/10.1063/1.116160
  2. Kuznetsova S., Mongush E., Lisitsa K. // J. Phys.: Conf. Ser. 2019. V. 1145. № 1. P. 012020.
  3. Laurenti M., Cauda V. // Coatings. 2018. V. 8. № 2. P. 67. https://doi.org/10.3390/coatings8020067
  4. Exarhos G.J., Sharma S.K. // Thin Solid Films. 1995. V. 270. № 1–2. P. 27. https://doi.org/10.1016/0040-6090(95)06855-4
  5. Bachari E.M., Baud G., Amor S.B. et al. // Thin Solid Films. 1999. V. 348. № 1–2. P. 165. https://doi.org/10.1016/s0040-6090(99)00060-7
  6. Triboulet R., Perriere J. // Prog. Cryst. Growth Charact. Mater. 2003. V. 47. № 2–3. P. 65. https://doi.org/10.1016/j.pcrysgrow.2005.01.003
  7. Муслимов А.Э., Асадчиков В.Е., Буташин А.В. и др. // Кристаллография. 2016. Т. 61. № 5. С. 703. https://doi.org/10.7868/S0023476116050143
  8. Itagaki N., Kuwahara K., Matsushima K. et al. // Opt. Eng. 2014. V. 53. № 8. P. 087109. https://doi.org/10.1117/1.oe.53.8.087109
  9. Trautnitz T., Sorgenfrei R., Fiederle M. // J. Crystal Growth. 2010. V. 312. № 4. P. 624. https://doi.org/10.1016/j.jcrysgro.2009.12.011
  10. Du X.L., Murakami M., Iwaki H. et al. // Phys. Status Solidi. A. 2002. V. 192. № 1. P. 183. https://doi.org/10.1002/1521-396x(200207)192:1<183::aid-ssa183>3.0.co;2-k
  11. Исмаилов А.М., Эмирасланова Л.Л., Рабаданов М.Х. и др. // Письма в ЖТФ. 2018. Т. 44. № 12. С. 52.
  12. Фоломешкин М.С., Волковский Ю.А., Просеков П.А. и др. // Кристаллография. 2022. Т. 67. № 3. С. 317. https://doi.org/10.31857/S0023476122030079
  13. Благов А.Е., Галиев Г.Б., Имамов Р.М. и др. // Кристаллография. 2017. Т. 62. № 3. С. 355. https://doi.org/10.7868/S002347611703002X
  14. Bowen D.K., Tanner B.K. // CRC press, 1998.
  15. Krost A., Bauer G., Woitok J. // Optical characterization of epitaxial semiconductor layers. Berlin, Heidelberg: Springer, 1996. P. 287. https://doi.org/10.1007/978-3-642-79678-4_6
  16. Holy V., Pietsch U., Baumbach T. High-resolution X-ray Scattering from thin films and multilayers. 1999. V. 149. https://doi.org/10.1007/BFb0109385
  17. Серегин А.Ю., Просеков П.А., Чуховский Ф.Н. и др. // Кристаллография. 2018. Т. 64. № 4. С. 521. https://doi.org/10.1134/S0023476119040180
  18. https://www-s.nist.gov/srmors/view_detail.cfm?srm=676A
  19. Birkholz M. // Thin Film Analysis by X-Ray Scattering. John Wiley Sons, 2006. P. 183.
  20. Благов А.Е., Васильев А.Л., Дмитриев В.П. и др. // Кристаллография. 2017. Т. 62. № 5. С. 716. https://doi.org/10.7868/S0023476117050034
  21. Nagao K., Kagami E. // Rigaku J. 2011. V. 27. № 2. P. 6.
  22. Larbah Y., Adnane M., Sahraoui T. // Mater. Sci. Poland. 2015. V. 33. № 3. P. 491.
  23. Kisi E.H., Elcombe M.M. // Acta Cryst. C. 1989. V. 45. № 12. P. 1867. https://doi.org/10.1107/S0108270189004269
  24. Соловьев А.А., Сочугов Н.С., Оскомов К.В. и др. // Физика плазмы. 2009. Т. 35. № 5. С. 443.
  25. Field D.J., Dew S.K., Burrell R.E. // J. Vac. Sci. Technol. A. 2002. V. 20. № 6. P. 2032. https://doi.org/10.1116/1.1515800

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (517KB)
3.

Baixar (684KB)
4.

Baixar (5MB)

Declaração de direitos autorais © Ю.А. Волковский, В.А. Жернова, М.С. Фоломешкин, П.А. Просеков, А.Э. Муслимов, А.В. Буташин, А.М. Исмаилов, Ю.В. Григорьев, Ю.В. Писаревский, В.М. Каневский, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies