Концентрация наночастиц как важный параметр для характеристики дисперсий и ее применение в биомедицине

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящее время стоит острая необходимость в стандартизации методов определения концентрации наночастиц и создания эталонных материалов для калибровки измеряемой величины. Точное определение концентрации наночастиц необходимо для оценки максимальной дозы вводимых нанопрепаратов в области диагностики и терапии in vivo, определения порядка реакции при использовании ферментативных нанореакторов. Кроме того, данный параметр обуславливает биологические эффекты, такие как образование белковой короны, улучшение поглощения и интернализации с клетками и т.д. В обзоре представлены наиболее часто встречающиеся способы определения концентрации наночастиц, основанные на их прямой визуализации с использованием методов микроскопии, на поглощении или рассеянии света, прямого подсчета наночастиц и гравиметрии, обсуждены их достоинства, недостатки и способы усовершенствования. Показано, что для более надежного и достоверного определения концентрации наночастиц следует использовать комбинацию нескольких методов.

Об авторах

Т. Н. Паширова

Институт органической и физической химии им. А.Е. Арбузова,
ФИЦ Казанский научный центр РАН

Email: tatyana_pashirova@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

З. М. Шайхутдинова

Институт органической и физической химии им. А.Е. Арбузова,
ФИЦ Казанский научный центр РАН

Email: tatyana_pashirova@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

Э. Б. Соуто

UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto; Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto

Email: tatyana_pashirova@mail.ru
Portugal, 4050-313, Porto; Portugal, 4050-313, Porto

П. Массон

Казанский (Приволжский) федеральный университет

Email: tatyana_pashirova@mail.ru
Россия, 420008, Казань, ул. Кремлевская, 18

В. Ф. Миронов

Институт органической и физической химии им. А.Е. Арбузова,
ФИЦ Казанский научный центр РАН

Автор, ответственный за переписку.
Email: tatyana_pashirova@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

Список литературы

  1. Clement S., Gardner B., Razali W.A.W. et al. Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method // Nanotechnology. 2017. V. 28. № 47. P. 475702. https://doi.org//10.1088/1361-6528/aa8d89
  2. Ouyang B., Poon W., Zhang Y.-N. et al. The dose threshold for nanoparticle tumour delivery // Nat. Mater. 2020. V. 19. № 12. P. 1362–1371. https://doi.org//s41563-020-0755-z
  3. Pashirova T., Shaihutdinova Z., Mansurova M. et al. Enzyme nanoreactor for in vivo detoxification of organophosphates // ACS Appl. Mater. Interfaces. 2022. V. 14. № 17. P. 19241–19252. https://doi.org/10.1021/acsami.2c03210
  4. Shajhutdinova Z., Pashirova T., Masson P. Kinetic processes in enzymatic nanoreactors for in vivo detoxification // Biomedicines. 2022. V. 10. № 4. P. 784. https://doi.org/10.3390/biomedicines10040784
  5. Pashirova T.N., Shaihutdinova Z.M., Mironov V.F., Masson P. Biomedical nanosystems for in vivo detoxification: From passive delivery systems to functional nanodevices and nanorobots // Acta Naturae. 2023. V. 15. № 1. P. 4–12. https://doi.org//2 10.32607/actanaturae.15681
  6. Qian X., Nymann Westensee I., Brodszkij E., Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities // Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2020. V. 13. № 3. P. e1683. https://doi.org/10.1002/wnan.1683
  7. Driscoll D.F., Nicoli D.F. Analytical methods for determining the size (distribution) in parenteral dispersions // Non-Biological Complex Drugs. The Science and the Regulatory Landscape. 2015. V. 20. P. 193–259. https://doi.org/10.1007/978-3-319-16241-6_7
  8. Soema P.C., Willems G.-J., Jiskoot W., Amorij J.-P., Kersten G.F. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach // Eur. J. Pharm. Biopharm. 2015. V. 94. P. 427–435. https://doi.org/10.1016/j.ejpb.2015.06.026
  9. Mozafari M.R., Mazaheri E., Dormiani K. Simple equations pertaining to the particle number and surface area of metallic, polymeric, lipidic and vesicular nanocarriers // Sci. Pharm. 2021. V. 89. № 2. P. 15. https://doi.org/10.3390/scipharm89020015
  10. Pidgeon C., Hunt C.A. Calculating number and surface area of liposomes in any suspension // J. Pharm. Sci. 1981. V. 70. № 2. P. 173–176. https://doi.org/10.1002/jps.2600700215
  11. Epstein H., Afergan E., Moise T. et al. Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods // Biomaterials. 2006. V. 27. № 4. P. 651–659. https://doi.org/10.1016/j.biomaterials.2005.06.006
  12. Vogel R., Savage J., Muzard J. et al. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge? // J. Extracell. Vesicles. 2021. V. 10. № 3. P. e12052. https://doi.org/10.1002/jev2.12052
  13. Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties // Nanoscale. 2018. V. 10. № 27. P. 12871–12934. https://doi.org/10.1039/C8NR02278J
  14. Minelli C., Bartczak D., Peters R. et al. Sticky measurement problem: Number concentration of agglomerated nanoparticles // Langmuir. 2019. V. 35. № 14. P. 4927–4935. https://doi.org/10.1021/acs.langmuir.8b04209
  15. Shard A.G., Wright L., Minelli C. Robust and accurate measurements of gold nanoparticle concentrations using UV-visible spectrophotometry // Biointerphases. 2018. V. 13. № 6. P. 061002. https://doi.org/10.1116/1.5054780
  16. Chithrani B.D., Ghazani A.A., Chan W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells // Nano Lett. 2006. V. 6. № 4. P. 662–668. https://doi.org/10.1021/nl052396o
  17. Cho E.C., Xie J., Wurm P.A., Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant // Nano Lett. 2009. V. 9. № 3. P. 1080–1084. https://doi.org/10.1021/nl803487r
  18. Yan H., Cacioppo M., Megahed S. et al. Influence of the chirality of carbon nanodots on their interaction with proteins and cells // Nat. Commun. 2021. V. 12. № 1. P. 7208. https://doi.org/10.1038/s41467-021-27406-1
  19. Shang J., Gao X. Nanoparticle counting: Towards accurate determination of the molar concentration // Chem. Soc. Rev. 2014. V. 43. № 21. P. 7267–7278. https://doi.org/10.1039/C4CS00128A
  20. Khlebtsov B.N., Khanadeev V.A., Khlebtsov N.G. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra // Langmuir. 2008. V. 24. № 16. P. 8964–8970. https://doi.org/10.1021/la8010053
  21. Baalousha M., Prasad A., Lead J.R. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force micro-scopy // Environ. Sci. Process. Impacts. 2014. V. 16. № 6. P. 1338–1347. https://doi.org/10.1039/C3EM00712J
  22. Haiss W., Thanh N.T.K., Aveyard J., Fernig D.G. Determination of size and concentration of gold nanoparticles from UV−Vis spectra // Anal. Chem. 2007. V. 79. № 11. P. 4215–4221. https://doi.org/10.1021/ac0702084
  23. Khlebtsov N.G. Determination of size and concentration of gold nanoparticles from extinction spectra // Anal. Chem. 2008. V. 80. № 17. P. 6620–6625. https://doi.org/10.1021/ac800834n
  24. Paramelle D., Sadovoy A., Gorelik S. et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra // Analyst. 2014. V. 139. № 19. P. 4855. https://doi.org/10.1039/C4AN00978A
  25. Хлебцов Б.Н., Ханадеев В.А., Хлебцов Н.Г. Определение размера, концентрации и показателя преломления наночастиц оксида кремния методом спектротурбидиметрии // Оптика и спектроскопия. 2008. Т. 105. № 5. С. 801–808.
  26. Высоцкий В.В., Урюпина О.Я., Гусельникова А.В., Ролдугин В.И. О возможности определения концентрации наночастиц методом динамического светорассеяния // Коллоид. журн. 2009. Т. 71. № 6. С. 728–733.
  27. Левин А.Д., Садагов А.Ю. Способ оптического измерения счетной концентрации дисперсных частиц в жидких средах и устройство для его осуществления // Патент № 2610942 C Российская Федерация, МПК G01N 21/00. № 2015151702, заявл. 02.12.2015, опубл. 17.02.2017.
  28. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986.
  29. Li F., Schafer R., Hwang C.-T., Tanner C.E., Ruggiero S.T. High-precision sizing of nanoparticles by laser transmission spectroscopy // Appl. Opt. 2010. V. 49. № 34. P. 6602. https://doi.org/10.1364/AO.49.006602
  30. Li F., Mahon A.R., Barnes M.A. et al. Quantitative and rapid DNA detection by laser transmission spectroscopy // PLoS One. 2011. V. 6. № 12. P. e29224. https://doi.org/10.1371/journal.pone.0029224
  31. Sennato S., Sarra A., La Capria C.P. et al. Quantification of particle number concentration in liposomal suspensions by Laser Transmission Spectroscopy (LTS) // Colloid. Surf. B. 2023. V. 222. P. 113137. https://doi.org/10.1016/j.colsurfb.2023.113137
  32. Sun N., Johnson J., Stack M.S. et al. Nanoparticle analysis of cancer cells by light transmission spectroscopy // Anal. Biochem. 2015. V. 484. P. 58–65. https://doi.org/10.1016/j.ab.2015.05.004
  33. Sarra A., Stanchieri G.D.P., De Marcellis A. et al. Laser Transmission Spectroscopy based on tunable-gain dual-channel dual-phase LIA for biological nanoparticles characterization // IEEE Trans. Biomed. Circuits Syst. 2021. V. 15. № 1. P. 177–187. https://doi.org/10.1109/TBCAS.2021.3060569
  34. Filipe V., Hawe A., Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates // Pharm. Res. 2010. V. 27. № 5. P. 796–810. https://doi.org/10.1007/s11095-010-0073-2
  35. Griffiths D., Carnell-Morris P., Wright M. Nanoparticle tracking analysis for multiparameter characterization and counting of nanoparticle suspensions // Methods Mol. Biol. 2020. P. 289–303. https://doi.org/10.1007/978-1-0716-0319-2_22
  36. Gallego-Urrea J.A., Tuoriniemi J., Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples // TrAC Trends Anal. Chem. 2011. V. 30. № 3. P. 473–483. https://doi.org/10.1016/j.trac.2011.01.005
  37. Tian X., Nejadnik M.R., Baunsgaard D. et al. Comprehensive evaluation of nanoparticle tracking analysis (NanoSight) for characterization of proteinaceous submicron particles // J. Pharm. Sci. 2016. V. 105. № 11. P. 3366–3375. https://doi.org/10.1016/j.xphs.2016.08.009
  38. Sediq A.S., van Duijvenvoorde R.B., Jiskoot W., Nejadnik M.R. No Touching! Abrasion of adsorbed protein is the root cause of subvisible particle formation during stirring // J. Pharm. Sci. 2016. V. 105. № 2. P. 519–529. https://doi.org/10.1016/j.xphs.2015.10.003
  39. Bickel F., Herold E.M., Signes A. et al. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation // Eur. J. Pharm. Biopharm. 2016. V. 107. P. 310–320. https://doi.org/10.1016/j.ejpb.2016.07.020
  40. Chen C., Zhu S., Huang T., Wang S., Yan X. Analytical techniques for single-liposome characterization // Anal. Methods. 2013. V. 5. № 9. P. 2150.https://doi.org/10.1039/c3ay40219c
  41. Barcelos J.M., Hayasaki T.G., de Santana R.C. et al. Photothermal properties of IR-780-based nanoparticles depend on nanocarrier design: A comparative study on synthetic liposomes and cell membrane and hybrid biomimetic vesicles // Pharmaceutics. 2023. V. 15. № 2. P. 444. https://doi.org/10.3390/pharmaceutics15020444
  42. Gross J., Sayle S., Karow A.R., Bakowsky U., Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters // Eur. J. Pharm. Biopharm. 2016. V. 104. P. 30–41. https://doi.org/10.1016/j.ejpb.2016.04.013
  43. Anderson W., Kozak D., Coleman V.A., Jämting Å.K., Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions // J. Colloid Interface Sci. 2013. V. 405. P. 322–330. https://doi.org/10.1016/j.jcis.2013.02.030
  44. Malloy A., Carr B. NanoParticle tracking analysis – The HaloTM System // Part. Part. Syst. Charact. 2006. V. 23. № 2. P. 197–204. https://doi.org/10.1002/ppsc.200601031
  45. Takechi-Haraya Y., Usui A., Izutsu K., Abe Y. Atomic force microscopic imaging of mRNA-lipid nanoparticles in aqueous medium // J. Pharm. Sci. 2023. V. 112. № 3. P. 648–652. https://doi.org/10.1016/j.xphs.2022.11.026
  46. Usfoor Z., Kaufmann K., Rakib A.S.H., Hergenröder R., Shpacovitch V. Features of sizing and enumeration of silica and polystyrene nanoparticles by nanoparticle tracking analysis (NTA) // Sensors. 2020. V. 20. № 22. P. 6611. https://doi.org/10.3390/s20226611
  47. Bachurski D., Schuldner M., Nguyen P.-H. et al. Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView // J. Extracell. Vesicles. 2019. V. 8. № 1. P. 1596016. https://doi.org/10.1080/20013078.2019.1596016
  48. Hoover B.M., Murphy R.M. Evaluation of nanoparticle tracking analysis for the detection of rod-shaped particles and protein aggregates // J. Pharm. Sci. 2020. V. 109. № 1. P. 452–463. https://doi.org/10.1016/j.xphs.2019.10.006
  49. Reipa V., Purdum G., Choi J. Measurement of nanoparticle concentration using quartz crystal microgravimetry // J. Phys. Chem. B. 2010. V. 114. № 49. P. 16112–16117. https://doi.org/10.1021/jp103861m
  50. Wen C.-Y., Tang M., Hu J. et al. Determination of the absolute number concentration of nanoparticles and the active affinity sites on their surfaces // Anal. Chem. 2016. V. 88. № 20. P. 10134–10142. https://doi.org/10.1021/acs.analchem.6b02613
  51. Maas S.L.N., De Vrij J., Broekman M.L.D. Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing // J. Vis. Exp. 2014. № 92. P. e51623. https://doi.org/10.3791/51623
  52. Shard A.G., Sparnacci K., Sikora A. et al. Measuring the relative concentration of particle populations using differential centrifugal sedimentation // Anal. Methods. 2018. V. 10. № 22. P. 2647–2657. https://doi.org/10.1039/C8AY00491A
  53. Vaclavek T., Prikryl J., Foret F. Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review // J. Sep. Sci. 2019. V. 42. № 1. P. 445–457.https://doi.org/10.1002/jssc.201800978
  54. Austin J., Minelli C., Hamilton D., Wywijas M., Jones H.J. Nanoparticle number concentration measurements by multi-angle dynamic light scattering // J. Nanoparticle Res. 2020. V. 22. № 5. P. 108. https://doi.org/10.1007/s11051-020-04840-8
  55. Marques S.S., Ramos I.I., Silva C. et al. Lab-on-Valve automated and miniaturized assessment of nanoparticle concentration based on light-scattering // Anal. Chem. 2023. V. 95. № 10. P. 4619–4626. https://doi.org/10.1021/acs.analchem.2c04631
  56. Pauw B.R., Kästner C., Thünemann A.F. Nanoparticle size distribution quantification: Results of a small-angle X-ray scattering inter-laboratory comparison // J. Appl. Crystallogr. 2017. V. 50. № 5. P. 1280–1288. https://doi.org/10.1107/S160057671701010X
  57. Hlaváček A., Křivánková J., Brožková H. et al. Absolute counting method with multiplexing capability for estimating the number concentration of nanoparticles using anisotropically collapsed gels // Anal. Chem. 2022. V. 94. № 41. P. 14340–14348. https://doi.org/10.1021/acs.analchem.2c02989
  58. Li M., Guha S., Zangmeister R., Tarlov M.J., Zachariah M.R. Method for determining the absolute number concentration of nanoparticles from electrospray sources // Langmuir. 2011. V. 27. № 24. P. 14732–14739. https://doi.org/10.1021/la202177s
  59. Urey C., Weiss V.U., Gondikas A. et al. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles // Int. J. Pharm. 2016. V. 513. № 1–2. P. 309–318. https://doi.org/10.1016/j.ijpharm.2016.09.049
  60. Tuoriniemi J., Moreira B., Safina G. Determining number concentrations and diameters of polystyrene particles by measuring the effective refractive index of colloids using surface plasmon resonance // Langmuir. 2016. V. 32. № 41. P. 10632–10640. https://doi.org/10.1021/acs.langmuir.6b02684
  61. Cuello-Nuñez S., Abad-Álvaro I., Bartczak D. et al. The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach // J. Anal. At. Spectrom. 2020. V. 35. № 9. P. 1832–1839. https://doi.org/10.1039/c9ja00415g
  62. Weiss V.U., Wieland K., Schwaighofer A., Lendl B., Allmaier G. Native nano-electrospray differential mobility analyzer (nES GEMMA) enables size selection of liposomal nanocarriers combined with subsequent direct spectroscopic analysis // Anal. Chem. 2019. V. 91. № 6. P. 3860–3868. https://doi.org/10.1021/acs.analchem.8b04252
  63. Левин А.Д., Нагаев А.И., Рукин Е.М. и др. Проблемы методического обеспечения биомедицинских нанотехнологий // Измерительная техника. 2010. № 8. С. 29–34.
  64. Du S., Kendall K., Morris S., Sweet C. Measuring number-concentrations of nanoparticles and viruses in liquids on-line // J. Chem. Technol. Biotechnol. 2010. V. 85. № 9. P. 1223–1228. https://doi.org/10.1002/jctb.2421
  65. Yahata S., Hirose M., Ueno T., Nagumo H., Sakai-Kato K. Effect of sample concentration on nanoparticle tracking analysis of small extracellular vesicles and liposomes mimicking the physicochemical properties of exosomes // Chem. Pharm. Bull. 2021. V. 69. № 11. P. 1045–1053. https://doi.org/10.1248/cpb.c21-00452
  66. De Jong W.H., Hagens W.I., Krystek P. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration // Biomaterials. 2008. V. 29. № 12. P. 1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037
  67. Reshetov V., Zorin V., Siupa A. et al. Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (Temoporfin) with serum proteins: Protein binding and liposome destruction // Photochem. Photobiol. 2012. V. 88. № 5. P. 1256–1264. https://doi.org/10.1111/j.1751-1097.2012.01176.x
  68. Wilson D.R., Green J.J. Nanoparticle tracking analysis for determination of hydrodynamic diameter, concentration, and zeta-potential of polyplex nanoparticles // Methods Mol. Biol. 2017. P. 31–46. https://doi.org/10.1007/978-1-4939-6840-4_3
  69. Wilson D.R., Mosenia A., Suprenant M.P. et al. Continuous microfluidic assembly of biodegradable poly(be-ta-amino ester)/DNA nanoparticles for enhanced gene delivery // J. Biomed. Mater. Res. Part A. 2017. V. 105. № 6. P. 1813–1825. https://doi.org/10.1002/jbm.a.36033
  70. Uzhytchak M., Smolková B., Lunova M. et al. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function // Adv. Drug Deliv. Rev. 2023. V. 197. P. 114828. https://doi.org/10.1016/j.addr.2023.114828
  71. Kato H. Tracking nanoparticles inside cells // Nat. Nanotechnol. 2011. V. 6. № 3. P. 139–140. https://doi.org/10.1038/nnano.2011.25
  72. Rennick J.J., Johnston A.P.R., Parton R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics // Nat. Nanotechnol. 2021. V. 16. № 3. P. 266–276. https://doi.org/10.1038/s41565-021-00858-8
  73. Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells // Nanoscale Adv. 2021. V. 3. № 8. P. 2196–2212. https://doi.org/10.1039/D0NA00716A
  74. Salvati A., Poelstra K. Drug targeting and nanomedicine: Lessons learned from liver targeting and opportunities for drug innovation // Pharmaceutics. 2022. V. 14. № 1. P. 217. https://doi.org/10.3390/pharmaceutics14010217
  75. Vtyurina N., Åberg C., Salvati A. Imaging of nanoparticle uptake and kinetics of intracellular trafficking in individual cells // Nanoscale. 2021. V. 13. № 23. P. 10436–10446. https://doi.org/10.1039/D1NR00901J
  76. Åberg C., Piattelli V., Montizaan D., Salvati A. Sources of variability in nanoparticle uptake by cells // Nanoscale. 2021. V. 13. № 41. P. 17530–17546. https://doi.org/10.1039/D1NR04690J
  77. Aizik G., Waiskopf N., Agbaria M. et al. Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue // ACS Nano. 2017. V. 11. № 3. P. 3038–3051. https://doi.org/10.1021/acsnano.7b00016
  78. Labouta H.I., Sarsons C., Kennard J. et al. Understanding and improving assays for cytotoxicity of nanoparticles: What really matters? // RSC Adv. 2018. V. 8. № 41. P. 23027–23039. https://doi.org/10.1039/C8RA03849J
  79. Fan Y., Marioli M., Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery // J. Pharm. Biomed. Anal. 2021. V. 192. P. 113642. https://doi.org/10.1016/j.jpba.2020.113642
  80. Ma B., Bianco A. Regulation of biological processes by intrinsically chiral engineered materials // Nat. Rev. Mater. 2023. V. 8. № 6. P. 403–413. https://doi.org/10.1038/s41578-023-00561-1
  81. Salvati A., Åberg C., dos Santos T. et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics // Nanomedicine Nanotechnology, Biol. Med. 2011. V. 7. № 6. P. 818–826. https://doi.org/10.1016/j.nano.2011.03.005
  82. Shi H., He X., Yuan Y., Wang K., Liu D. Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking // Anal. Chem. 2010. V. 82. № 6. P. 2213–2220. https://doi.org/10.1021/ac902417s
  83. Chen Y.-C., Chen K.-F., Lin K.-Y.A. et al. Evaluation of the pulmonary toxicity of PSNPs using a Transwell-based normal human bronchial epithelial cell culture system // Sci. Total Environ. 2023. V. 895. P. 165213. https://doi.org/S0048969723038366
  84. Yang K., Tran K., Salvati A. Tuning liposome stability in biological environments and intracellular drug release kinetics // Biomolecules. 2022. V. 13. № 1. P. 59. https://doi.org/10.3390/biom13010059
  85. Faria M., Noi K.F., Dai Q. et al. Revisiting cell–particle association in vitro: A quantitative method to compare particle performance // J. Control. Release. 2019. V. 307. P. 355–367. https://doi.org/10.1016/j.jconrel.2019.06.027
  86. Simonsen J.B., Kromann E.B. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies – A commentary // J. Control. Release. 2021. V. 335. P. 660–667. https://doi.org/10.1016/j.jconrel.2021.05.041
  87. Gottstein C., Wu G., Wong B.J., Zasadzinski J.A. Precise quantification of nanoparticle internalization // ACS Nano. 2013. V. 7. № 6. P. 4933–4945. https://doi.org/10.1021/nn400243d
  88. Vischio F., Fanizza E., De Bellis V. et al. Near-infrared absorbing solid lipid nanoparticles encapsulating plasmonic copper sulfide nanocrystals // J. Phys. Chem. C. 2019. V. 123. № 37. P. 23205–23213.https://doi.org/10.1021/acs.jpcc.9b05897
  89. Салаватов Н.А., Большакова А.В., Морозов В.Н. и др. Золотые наностержни с функционализированной органокремнеземной оболочкой: синтез и перспективы применения в тераностике опухолей // Коллоидный журнал. 2022. Т. 84. № 1. С. 97–104. https://doi.org/10.31857/S0023291222010104
  90. Chauhan K., Zárate-Romero A., Sengar P., Medrano C., Vazquez-Duhalt R. Catalytic kinetics considerations and molecular tools for the design of multienzymatic cascade nanoreactors // ChemCatChem. 2021. V. 13. № 17. P. 3732–3748. https://doi.org/10.1002/cctc.202100604

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (88KB)
3.

Скачать (177KB)
4.

Скачать (213KB)


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах