CROSSLINKING AGENTS IN THE TARGETED DESIGN OF CHITOSAN-BASED MATERIALS
- Авторлар: Kildeeva N.R1, Privar Y.O2, Bratskaya S.Y.2,3
-
Мекемелер:
- The Kosygin State University of Russia
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
- School of Medicine and Life Sciences, Far East Federal University
- Шығарылым: Том 87, № 6 (2025)
- Беттер: 701-734
- Бөлім: Articles
- ##submission.dateSubmitted##: 27.01.2026
- ##submission.datePublished##: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376456
- DOI: https://doi.org/10.7868/S3034543X25060094
- ID: 376456
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
N. Kildeeva
The Kosygin State University of RussiaMoscow, Russia
Yu. Privar
Institute of Chemistry, Far Eastern Branch, Russian Academy of SciencesVladivostok, Russia
S. Bratskaya
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences; School of Medicine and Life Sciences, Far East Federal University
Email: sbratska@ich.dvo.ru
Vladivostok, Russia; Ajax Settlement, Russia
Әдебиет тізімі
- Chelu M., et al. Chitosan hydrogels for water purification applications // Gels. 2023. V. 9. № 8. P. 664. https://doi.org/10.3390/gels9080664
- Azarova Y.A., et al. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry // Carbohydr. Polym. 2015. V. 134. P. 680–686. https://doi.org/10.1016/j.carbpol.2015.07.086
- Franconetti A., et al. Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation // Appl. Catal. A Gen. 2016. V. 517. P. 176–186. https://doi.org/10.1016/j.apcata.2016.03.012
- Guibal E. Heterogeneous catalysis on chitosan-based materials: a review // Prog. Polym. Sci. 2005. V. 30. № 1. P. 71–109. https://doi.org/10.1016/j.progpolymsci.2004.12.001
- Tian B., et al. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review // J. Mater. Chem. B. 2020. V. 8. № 44. P. 10050–10064. https://doi.org/10.1039/D0TB01869D
- Tian B., Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review // Int. J. Biol. Macromol. 2023. V. 235. P. 123902. https://doi.org/10.1016/j.ijbiomac.2023.123902
- Berger J., et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications // Eur. J. Pharm. Biopharm. 2004. V. 57. № 1. P. 19–34. https://doi.org/10.1016/S0939-6411(03)00161-9
- Pestov A., Bratskaya S. Chitosan and its derivatives as highly efficient polymer ligands // Molecules. 2016. V. 21. № 3. P. 330. https://doi.org/10.3390/molecules21030330
- Alves N.M., Mano J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications // Int. J. Biol. Macromol. 2008. V. 43. № 5. P. 401–414. https://doi.org/10.1016/j.ijbiomac.2008.09.007
- Dong J., et al. Hydrophilic chitosan: modification pathways and biomedical applications // Russ. Chem. Rev. 2024. V. 93. № 5. P. RCR5120. https://doi.org/10.59761/RCR5120
- Crompton K.E., et al. Morphology and gelation of thermosensitive chitosan hydrogels // Biophys. Chem. 2005. V. 117. № 1. P. 47–53. https://doi.org/10.1016/j.bpc.2005.03.009
- Marin L., et al. Hydrogelation of chitosan with monoaldehydes towards biomaterials with tuned properties // In: New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications. 2021. P. 345–356. https://doi.org/10.1007/978-3-030-57456-7_17
- Yeh Y., et al. The role of aldehyde‐functionalized crosslinkers on the property of chitosan hydrogels // Macromol. Biosci. 2022. V. 22. № 5. P. 2100477. https://doi.org/10.1002/mabi.202100477
- Tsai C.-C., et al. Injectable, shear-thinning, self-healing, and self-cross-linkable benzaldehyde-conjugated chitosan hydrogels as a tissue adhesive // Biomacromolecules. 2024. V. 25. № 2. P. 1084–1095. https://doi.org/10.1021/acs.biomac.3c01117
- Li Q., et al. The design, mechanism and biomedical application of self-healing hydrogels // Chinese Chem. Lett. 2017. V. 28. № 9. P. 1857–1874. https://doi.org/10.1016/j.cclet.2017.05.007
- Pan C., et al. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles // Carbohydr. Polym. 2020. V. 241. P. 116349. https://doi.org/10.1016/j.carbpol.2020.116349
- Liang J., et al. The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite // Polymers (Basel). 2019. V. 11. № 3. P. 491. https://doi.org/10.3390/polym11030491
- Ul’yabaeva G.R., et al. Adsorption of an acid textile dye from aqueous solutions by a chitosan-containing polyvinyl alcohol composite cryogel // Fibre Chem. 2019. V. 51. № 3. P. 199–203. https://doi.org/10.1007/s10692-019-10074-9
- Subramanian A., et al. Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation // J. Biomed. Mater. Res. – Part A. 2005. V. 75. № 3. P. 742–753. https://doi.org/10.1002/jbm.a.30489
- Cha C., et al. Biodegradable polymer crosslinker: Independent control of stiffness, toughness, and hydrogel degradation rate // Adv. Funct. Mater. 2009. V. 19. № 19. P. 3056–3062. https://doi.org/10.1002/adfm.200900865
- Manickam B., et al. ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview // Curr. Drug Deliv. 2014. V. 11. № 1. P. 139–145. https://doi.org/10.2174/15672018113106660059
- Ahmadi F., et al. Chitosan based hydrogels: characteristics and pharmaceutical applications // Res. Pharm. Sci. 2015. V. 10. № 1. P. 1–16.
- Reddy N., et. al. Crosslinking biopolymers for biomedical applications // Trends Biotechnol. 2015. V. 33. № 6. P. 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008
- Yammine P., et al. Types of crosslinkers and their applications in biomaterials and biomembranes // Chem. 2025. V. 7. № 2. P. 61. https://doi.org/10.3390/chemistry7020061
- Ma P.X. Biomimetic materials for tissue engineering // Adv. Drug Deliv. Rev. 2008. V. 60. № 2. P. 184–198. https://doi.org/10.1016/j.addr.2007.08.041
- Fu J., et al. The chitosan hydrogels: from structure to function // New J. Chem. 2018. V. 42. № 21. P. 17162–17180. https://doi.org/10.1039/C8NJ03482F
- Rajabi M., et al. Chitosan hydrogels in 3D printing for biomedical applications // Carbohydr. Polym. 2021. V. 260. P. 117768. https://doi.org/10.1016/j.carbpol.2021.117768
- Hu J., et al. Visible light crosslinkable chitosan hydrogels for tissue engineering // Acta Biomater. 2012. V. 8. № 5. P. 1730–1738. https://doi.org/10.1016/j.actbio.2012.01.029
- Hong F., et al. Chitosan-based hydrogels: from preparation to applications, a review // Food Chem. X. 2024. V. 21. P. 101095. https://doi.org/10.1016/j.fochx.2023.101095
- Jing H., et al. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond // Carbohydr. Polym. 2022. V. 278. P. 118993. https://doi.org/10.1016/j.carbpol.2021.118993
- Enache A.-C., et al. Evaluation of physically and/or chemically modified chitosan hydrogels for proficient release of insoluble nystatin in simulated fluids // Gels. 2022. V. 8. № 8. P. 495. https://doi.org/10.3390/gels8080495
- Ye J., et al. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application // Eur. Polym. J. 2020. V. 139. P. 110024. https://doi.org/10.1016/j.eurpolymj.2020.110024
- Huang S., et al. An overview of dynamic covalent bonds in polymer material and their applications // Eur. Polym. J. 2020. V. 141. P. 110094. https://doi.org/10.1016/j.eurpolymj.2020.110094
- Picchioni F., et. al. Hydrogels based on dynamic covalent and non covalent bonds: A chemistry perspective // Gels. 2018. V. 4. № 1. P. 21. https://doi.org/10.3390/gels4010021
- Li Y., et al. Preparation of chitosan-based injectable hydrogels and its application in 3D cell culture // J. Vis. Exp. 2017. V. 2017. № 127. P. 1–7. https://doi.org/10.3791/56253
- Maiz-Fernández S., et al. Dynamic and self-healable chitosan/hyaluronic acid-based in situ-forming hydrogels // Gels. 2022. V. 8. № 8. P.477. https://doi.org/10.3390/gels8080477
- Pei M., et al. Photocrosslinkable chitosan hydrogels and their biomedical applications // J. Polym. Sci. Part A Polym. Chem. 2019. V. 57. № 18. P. 1862–1871. https://doi.org/10.1002/pola.29305
- Truong V.X., et al. In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering // Biomater. Sci. 2014. V. 2. № 2. P. 167–175. https://doi.org/10.1039/C3BM60159E
- Michel S.E.S., et al. Tunable thiol–ene photo-cross-linked chitosan-based hydrogels for biomedical applications // ACS Appl. Bio Mater. 2020. V. 3. № 11. P. 8075–8083. https://doi.org/10.1021/acsabm.0c01171
- Roas-Escalona N., et al. Chitosan-based hydrogels: influence of crosslinking stategy on rheological properties // Carbohydr. Polym. 2024. V. 341. P. 122329. https://doi.org/10.1016/j.carbpol.2024.122329
- Ruiz-Pardo C., et al. Chitosan hydrogels based on the Diels–Alder click reaction: Rheological and kinetic study // Polymers. 2022. V. 14. № 6. P. 1202. https://doi.org/10.3390/polym14061202
- Carmona P., et al. Glyceraldehyde as an efficient chemical crosslinker agent for the formation of chitosan hydrogels // Gels. 2021. V. 7. № 4. P. 186. https://doi.org/10.3390/gels7040186
- Yu Y., et al. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review // Biomater. Sci. 2021. V. 9. № 5. P. 1583–1597. https://doi.org/10.1039/D0BM01403F
- Martínez-Mejía G., et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions // Colloids Surfaces A. Physicochem. Eng. Asp. 2019. V. 579. P. 123658. https://doi.org/10.1016/j.colsurfa.2019.123658
- Pinto R. V., et al. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications // Mater. Sci. Eng. C. 2020. V. 109. P. 110557. https://doi.org/10.1016/j.msec.2019.110557
- Harish Prashanth K.V., Tharanathan R.N. Crosslinked chitosan – Preparation and characterization // Carbohydr. Res. 2006. V. 341. № 1. P. 169–173. https://doi.org/10.1016/j.carres.2005.10.016
- Beppu M.M., et al. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption // J. Memb. Sci. 2007. V. 301. № 1–2. P. 126–130. https://doi.org/10.1016/j.memsci.2007.06.015
- Pestov A., et al. Chitosan cross-linking with acetaldehyde acetals // Biomimetics. 2022. V. 7. № 1. P. 10. https://doi.org/10.3390/biomimetics7010010
- Mikhailov S.N., et al. Crosslinking of chitosan with dialdehyde derivatives of nucleosides and nucleotides. Mechanism and comparison with glutaraldehyde // Nucleosides, Nucleotides and Nucleic Acids. 2016. V. 35. № 3. P. 114–129. https://doi.org/10.1080/15257770.2015.1114132
- Wegrzynowska-Drzymalska K., et al. Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications // Materials (Basel). 2020. V. 13. № 15. P. 3413. https://doi.org/10.3390/ma13153413
- Monteiro O.A., et al. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system // Int. J. Biol. Macromol. 1999. V. 26. № 2–3. P. 119–128. https://doi.org/10.1016/S0141-8130(99)00068-9
- Li B., et al. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde // Mar. Drugs. 2013. V. 11. № 5. P. 1534–1552. https://doi.org/10.3390/md11051534
- Kil’deeva N.R., et al. Peculiarities of obtaining biocompatible films based on chitosan cross linked by genipin // Polym. Sci. Ser. D. 2017. V. 10. № 2. P. 189–193. https://doi.org/10.1134/S1995421217020095
- Potthast A., et al. Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles // Holzforschung. 2007. V. 61. № 6. P. 662–667. https://doi.org/10.1515/HF.2007.099
- Dyatlov V.A., et al. Change of polysaccharide molecular-weight distribution and fraction homogeneity after periodate oxidation // Chem. Nat. Compd. 2014. V. 50. № 6. P. 973–977. https://doi.org/10.1007/s10600-014-1139-x
- Meade S.J., et al. The role of dicarbonyl compounds in non-enzymatic crosslinking: a structure–activity study // Bioorg. Med. Chem. 2003. V. 11. № 6. P. 853–862. https://doi.org/10.1016/S0968-0896(02)00564-3
- Kildeeva N.R., et al. About mechanism of chitosan cross-linking with glutaraldehyde // Russ. J. Bioorganic Chem. 2009. V. 35. № 3. P. 360–369. https://doi.org/10.1134/S106816200903011X
- Mikhailov S.N., Kildeeva N.R. Mechanisms of chemical cross-linking of chitosan with aldehyde derivatives // Izv. Ufim. Nauchnogo Tsentra RAN. 2018. V. 2. № 3. P. 67–71. https://doi.org/10.31040/2222-8349-2018-2-3-67-71
- Kawase M., et al. Application og glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment // Biol. Pharm. Bull. 1997. V. 20. № 6. P. 708–710. https://doi.org/10.1248/bpb.20.708
- Martínez-Mejía, G., et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions // Colloids Surfaces A Physicochem. Eng. Asp. 2019. V. 579. P. 123658. https://doi.org/10.1016/j.colsurfa.2019.123658
- Hoffmann B., et al. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering // J. Mater. Sci. Mater. Med. 2009. V. 20. P. 1495–1503. https://doi.org/10.1007/s10856-009-3707-3
- Mi F.-L., et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant // Biomaterials. 2002. V. 23. № 1. P. 181–191. https://doi.org/10.1016/S0142-9612(01)00094-1
- Ji C., et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2 // Acta Biomater. 2011. V. 7. № 4. P. 1653–1664. https://doi.org/10.1016/j.actbio.2010.11.043
- Kil’deeva N.R., et al. Biodegradable scaffolds based on chitosan: Preparation, properties and use for the cultivation of animal cells // Appl. Biochem. Microbiol. 2016. V. 52. P. 515–524. https://doi.org/10.1134/S0003683816050094
- Lai J.-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye // Int. J. Mol. Sci. 2012. V. 13. № 9. P. 10970–10985. https://doi.org/10.3390/ijms130910970
- Mi F.-L., et al. In vitro evaluation of a chitosan membrane cross-linked with genipin // J. Biomater. Sci. Polym. Ed. 2001. V. 12. № 8. P. 835–850. https://doi.org/10.1163/156856201753113051
- Sazhnev N.A., et al. Preparation of chitosan cryostructurates with controlled porous morphology and their use as 3D-scaffolds for the cultivation of animal cells // Appl. Biochem. Microbiol. 2018. V. 54. № 5. P. 459–467. https://doi.org/10.1134/S0003683818050162
- Olaru A.-M., et al. Biocompatible chitosan based hydrogels for potential application in local tumour therapy // Carbohydr. Polym. 2018. V. 179. P. 59–70. https://doi.org/10.1016/j.carbpol.2017.09.066
- Privar Y., et al. Chitosan cryogels cross-linked with 1,1,3-triglycidyloxypropane: Mechanical properties and cytotoxicity for cancer cell 3D cultures // Biomimetics. 2023. V. 8. № 2. P. 228. https://doi.org/10.3390/biomimetics8020228
- Privar Y., et al. Chitosan gels and cryogels cross-linked with diglycidyl ethers of ethylene glycol and polyethylene glycol in acidic media // Biomacromolecules. 2019. V. 20. № 4. P. 1635–1643. https://doi.org/10.1021/acs.biomac.8b01817
- Rinaudo M. New way to crosslink chitosan in aqueous solution // Eur. Polym. J. 2010. V. 46. № 7. P. 1537–1544. https://doi.org/10.1016/j.eurpolymj.2010.04.012
- Singh A., et al. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde // Bull. Mater. Sci. 2006. V. 29. № 3. P. 233–238. https://doi.org/10.1007/BF02706490
- Du W., et al. Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper (II) from aqueous solution // J. Appl. Polym. Sci. 2009. V. 111. № 6. P. 2881–2885. https://doi.org/10.1002/app.29247
- Zakharova A.N., et al. Dialdehyde derivatives of nucleosides and nucleotides as novel crosslinking reagents and their comparison with glutaraldehyde // Collection Symposium Series. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. 2011. V. 12. P. 254–258. https://doi.org/10.1135/css201112254
- Михайлов С.Н. и др. Об определении степени сшивки хитозана в реакции с диальдегидами // Известия уфимского научного центра РАН. 2016. Т. 3. № 1. С. 72–75.
- Azarova A.I., et al. Gel formation in polymeric composites for modification of fibrous materials // Fibre Chem. 2011. V. 43. № 2. P. 129–133. https://doi.org/10.1007/s10692-011-9319-y
- Wang W., et al. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents // Int. J. Biol. Macromol. 2023. V. 236. P. 123913. https://doi.org/10.1016/j.ijbiomac.2023.123913
- Muzzarelli R.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids // Carbohydr. Polym. 2009. V. 77. № 1. P. 1–9. https://doi.org/10.1016/j.carbpol.2009.01.016
- Butler M.F., et al. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin // J. Polym. Sci. Part A Polym. Chem. 2003. V. 41. № 24. P. 3941–3953. https://doi.org/10.1002/pola.10960
- Mi F., et al. Characterization of ring‐opening polymerization of genipin and pH‐dependent cross‐linking reactions between chitosan and genipin // J. Polym. Sci. Part A Polym. Chem. 2005. V. 43. № 10. P. 1985–2000. https://doi.org/10.1002/pola.20669
- Muzzarelli R., et al. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone // Mar. Drugs. 2015. V. 13. № 12. P. 7314–7338. https://doi.org/10.3390/md13127068
- Delmar K., et al. The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin // Carbohydr. Polym. 2015. V. 127. P. 28–37. https://doi.org/10.1016/j.carbpol.2015.03.039
- Kildeeva N., et al. Influence of genipin crosslinking on the properties of chitosan-based films // Polymers (Basel). 2020. V. 12. № 5. P. 1086. https://doi.org/10.3390/polym12051086
- Nikonorov V.V., et al. Crosslinking in solutions of chitosan in the presence of a crosslinking reagent for production of fibre biocatalysts // Fibre Chem. 2006. V. 38. № 2. P. 95–97. https://doi.org/10.1007/s10692-006-0047-7
- Кильдеева Н.Р. и др. Структурообразование в растворах хитозана в присутствии сшивающего реагента при получении биологически активных полимерных материалов // Известия высших учебных заведений // Химия и химическая технология. 2007. Т. 50. № 3. С. 53–56.
- Frick J.M., et al. Influence of glutaraldehyde crosslinking and alkaline post-treatment on the properties of chitosan-based films // J. Polym. Environ. 2018. V. 26. № 7. P. 2748–2757. https://doi.org/10.1007/s10924-017-1166-3
- Oliveira A.C.S., et al. Effect of glutaraldehyde/glycerol ratios on the properties of chitosan films // J. Food Process. Preserv. 2021. V. 45. № 1. P. 15060. https://doi.org/10.1111/jfpp.15060
- Kovaříček P., et al. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes // J. Am. Chem. Soc. 2012. V. 134. № 22. P. 9446–9455. https://doi.org/10.1021/ja302793c
- Wilson A., et al. Functional systems with orthogonal dynamic covalent bonds // Chem. Soc. Rev. 2014. V. 43. № 6. P. 1948–1962. https://doi.org/10.1039/c3cs60342c
- Wang L.L., et al. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks // J. Biomed. Mater. Res. – Part A. 2018. V. 106. № 4. P. 865–875. https://doi.org/10.1002/jbm.a.36323
- Guo B., et al. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration // Acta Biomater. 2019. V. 84. P. 180–193. https://doi.org/10.1016/j.actbio.2018.12.008
- Marin L., et al. Antifungal vanillin-imino-chitosan biodynameric films // J. Mater. Chem. B. 2013. V. 27. № 1. P. 3353–3358. https://doi.org/10.1039/c3tb20558d
- Iftime M.M., et al. Chitosan crosslinking with a vanillin isomer toward self-healing hydrogels with antifungal activity // Int. J. Biol. Macromol. 2022. V. 205. P. 574–586. https://doi.org/10.1016/j.ijbiomac.2022.02.077
- Iftime M., et al. New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release // Int. J. Biol. Macromol. 2020. V. 160. P. 398–408. https://doi.org/10.1016/j.ijbiomac.2020.05.207
- Ailincai D., et al. Iminoboronate-chitooligosaccharides hydrogels with strong antimicrobial activity for biomedical applications // Carbohydr. Polym. 2022. V. 276. P. 118727. https://doi.org/10.1016/j.carbpol.2021.118727
- Anisiei A., et al. Imination of microporous chitosan fibers—A route to biomaterials with “on demand” antimicrobial activity and biodegradation for wound dressings // Pharmaceutics. 2022. V. 14. № 1. P. 117. https://doi.org/10.3390/pharmaceutics14010117
- Marin L., et al. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry // Carbohydr. Polym. 2017. V. 170. P. 60–71. https://doi.org/10.1016/j.carbpol.2017.04.055
- Chen H., et al. One-step dynamic imine chemistry for preparation of chitosan-stabilized emulsions using a natural aldehyde: acid trigger mechanism and regulation and gastric delivery // J. Agric. Food Chem. 2020. V. 68. № 19. P. 5412–5425. https://doi.org/10.1021/acs.jafc.9b08301
- Jagadish R.S., et al. Preparation of N-vanillyl chitosan and 4-hydroxybenzyl chitosan and their physico-mechanical, optical, barrier, and antimicrobial properties // Carbohydr. Polym. 2012. V. 87. № 1. P. 110–116. https://doi.org/10.1016/j.carbpol.2011.07.024
- Marin L., et al. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties // Carbohydr. Polym. 2015. V. 117. P. 762–770. https://doi.org/10.1016/j.carbpol.2014.10.050
- Arya S.S., et al. Vanillin : a review on the therapeutic prospects of a popular flavouring molecule // Adv. Tradit. Med. 2021. V. 21. P. 1–17. https://doi.org/10.1007/s13596-020-00531-w
- Marin L., et al. Imino-chitosan biodynamers // Chem. Commun. 2012. V. 48. № 70. P. 8778–8780. https://doi.org/10.1039/c2cc34337a
- Xu C., et al. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages // Polym. Test. 2018. V. 66. P. 155–163. https://doi.org/10.1016/j.polymertesting.2018.01.016
- Iftime M.M., et al. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels // Carbohydr. Polym. 2017. V. 165. P. 39–50. https://doi.org/10.1016/j.carbpol.2017.02.027
- Liu C., et al. Multiple chiroptical switches and logic circuit based on salicyl‒ imine‒chitosan hydrogel // Carbohydr. Polym. 2021. V. 257. P. 117534. https://doi.org/10.1016/j.carbpol.2020.117534
- Ailincai D., et al. Hydrogels based on imino-chitosan amphiphiles as a matrix for drug delivery systems // Polymers (Basel). 2020. V. 12. № 11. P. 2687. https://doi.org/10.3390/polym12112687
- Hu J., et al. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering // Carbohydr. Polym. 2021. V. 271. P. 118440. https://doi.org/10.1016/j.carbpol.2021.118440
- Hunger M., et al. Double crosslinking of chitosan/vanillin hydrogels as a basis for mechanically strong gradient scaffolds for tissue engineering // Eng. Biomater. 2020. V. 155. P. 2–11. https://doi.org/10.34821/eng.biomat.155.2020.2-11
- Zhang Z.H., et al. Enhancing mechanical properties of chitosan films via modification with vanillin // Int. J. Biol. Macromol. 2015. V. 81. P. 638–643. https://doi.org/10.1016/j.ijbiomac.2015.08.042
- Damiri F., et al. Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release // J. Chem. 2020. V. 2020. P. 8747639. https://doi.org/10.1155/2020/8747639
- Qu J., et al. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy // Acta Biomater. 2017. V. 58. P. 168–180. https://doi.org/10.1016/j.actbio.2017.06.001
- Bratskaya S., et al. Carboxyalkylchitosan-based hydrogels with “imine clip”: enhanced stability and amino acids-induced disassembly under physiological conditions // Carbohydr. Polym. 2021. V. 274. P. 118618. https://doi.org/10.1016/j.carbpol.2021.118618
- Ding C., et al. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO // Biomacromolecules. 2010. V. 11. № 4. P. 1043–1051. https://doi.org/10.1021/bm1000179
- Bratskaya S., et al. Stimuli-responsive dual cross-linked N-carboxyethylchitosan hydrogels with tunable dissolution rate // Gels. 2021. V. 7. № 4. P. 188. https://doi.org/10.3390/gels7040188
- Qu X., Yang Z. Benzoic-imine-based physiological-pH-responsive materials for biomedical applications // Chemistry – An Asian Journal. 2016. V. 11. № 19. P. 2633–2641. https://doi.org/10.1002/asia.201600452
- Andreica B.-I., et al. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection // Carbohydr. Polym. 2024. V. 342. P. 122389. https://doi.org/10.1016/j.carbpol.2024.122389
- Skatova A.V., et al. Hydrogels of N-(2-carboxyethyl)chitosan with vanillin // Polym. Sci. Ser. B. 2022. V. 64. № 5. P. 699–706. https://doi.org/10.1134/S1560090422700361
- Bhattarai N., et al. PEG-grafted chitosan as an injectable thermoreversible hydrogel // Macromol. Biosci. 2005. V. 5. № 2. P. 107–111. https://doi.org/10.1002/mabi.200400140
- Vijayan A., et al. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing // Sci. Rep. 2019. V. 9. № 1. P. 19165. https://doi.org/10.1038/s41598-019-55214-7
- De Boulle K., et al. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers // Dermatologic Surg. 2013. V. 39. № 12. P. 1758–1766. https://doi.org/10.1111/dsu.12301
- Lei Y., et al. Hybrid pericardium with VEGF-loaded hyaluronic acid hydrogel coating to improve the biological properties of bioprosthetic heart valves // Macromol. Biosci. 2019. V. 19. № 6. P. 1800390. https://doi.org/10.1002/mabi.201800390
- Hendriks M., et al. Bioprostheses and its alternative fixation // J. Long. Term. Eff. Med. Implants. 2017. V. 27. № 2–4. P. 125–142. https://doi.org/10.1615/JLongTermEffMedImplants.v27.i2-4.40
- Wende F.J., et al. Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether // Int. J. Biol. Macromol. 2019. V. 131. P. 812–820. https://doi.org/10.1016/j.ijbiomac.2019.03.020
- Xue Y., et al. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether // RSC Advances. 2020. V. 10. № 12. P. 7206–7213. https://doi.org/10.1039/c9ra09271d
- Gámiz González M.A., et al. Synthesis of highly swellable hydrogels of water-soluble carboxymethyl chitosan and poly(ethylene glycol) // Polym. Int. 2017. V. 66. № 11. P. 1624–1632. https://doi.org/10.1002/pi.5424
- Tripodo G., et al. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity // Carbohydr. Polym. 2018. V. 198. P. 124–130. https://doi.org/10.1016/j.carbpol.2018.06.061
- Balasubramani K.P., et al. Mechanism and kinetics of curing of diglycidyl ether of bisphenol a (DGEBA) resin by chitosan // Polym. Eng. Sci. 2016. V. 57. № 8. P. 865–874. https://doi.org/10.1002/pen.24463
- Kiuchi H., et al. Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films // J. Appl. Polym. Sci. 2008. V. 107. № 6. P. 2823–3830. https://doi.org/10.1002/app.27546
- Liu R., et al. Solution blowing of chitosan/PVA hydrogel nanofiber mats // Carbohydr. Polym. 2014. V. 101. P. 1116–1121. https://doi.org/10.1016/j.carbpol.2013.10.056
- Shechter L., et al. Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides // Ind. Eng. Chem. 1956. V. 48. № 1. P. 86–93. https://doi.org/10.1021/ie50553a028
- Privar Y., et al. Gelation and cryogelation of chitosan: Origin of low efficiency of diglycidyl ethers as cross-linkers in acetic acid solutions // Polysaccharides. 2024. V. 5. № 4. P. 731–742. https://doi.org/10.3390/polysaccharides5040046
- Shechter L., et al. Glycidyl ether reactions with amines // Ind. Eng. Chem. 1956. V. 48. № 1. P. 94–97. https://doi.org/10.1021/ie50553a029
- Privar Y., et al. Tuning mechanical properties, swelling, and enzymatic degradation of chitosan cryogels using diglycidyl ethers of glycols with different chain length as cross-linkers // Gels. 2024. V. 10. № 7. P. 483. https://doi.org/10.3390/gels10070483
- Boroda A., et al. Sponge-like scaffolds for colorectal cancer 3D models: Substrate-driven difference in micro-tumors morphology // Biomimetics. 2022. V. 7. № 2. P. 56. https://doi.org/10.3390/biomimetics7020056
- Gun’ko V.M., et al. Cryogels: Morphological, structural and adsorption characterisation // Adv. Colloid Interface Sci. 2013. V. 187–188. P. 1–46. https://doi.org/10.1016/j.cis.2012.11.001
- Sen T., et al. Hierarchical porous hybrid chitosan scaffolds with tailorable mechanical properties // Mater. Lett. 2017. V. 209. P. 528–531. https://doi.org/10.1016/j.matlet.2017.08.088
- Kil’deeva N.R., et al. Modification of chitosan cryogels by pyridoxal phosphate to improve sorption capacity // Fibre Chem. 2012. V. 43. № 6. P. 426–432. https://doi.org/10.1007/s10692-012-9377-9
- Savina I.N., et al. Design and assessment of biodegradable macroporous cryogels as advanced tissue engineering and drug carrying materials // Gels. 2021. V. 7. № 3. P. 79. https://doi.org/10.3390/gels7030079
- Ng V.W.L., et al. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections // Adv. Drug Deliv. Rev. 2014. V. 78. P. 46–62. https://doi.org/10.1016/j.addr.2014.10.028
- Shen X., et al. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications // Green Chem. 2015. V. 18. № 1. P. 53–75. https://doi.org/10.1039/c5gc02396c
- Yang W.Y., Thirumavalavan M., Lee J.F. Effects of porogen and cross-linking agents on improved properties of silica-supported macroporous chitosan membranes for enzyme immobilization // J. Membr. Biol. 2015. V. 248. № 2. P. 231–240. https://doi.org/10.1007/s00232-014-9763-8
- Bhattarai N., Gunn J., Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery // Adv. Drug Deliv. Rev. 2010. V. 62. № 1. P. 83–99. https://doi.org/10.1016/j.addr.2009.07.019
- Andrabi S.M., et al. Supermacroporous hybrid polymeric cryogels for efficient removal of metallic contaminants and microbes from water // Int. J. Polym. Mater. 2016. V. 65. № 12. P. 636–645. https://doi.org/10.1080/00914037.2016.1157795
- Hedström M., et al. Monolithic macroporous albumin / chitosan cryogel structure : a new matrix for enzyme immobilization // Anal Bioanal Chem. 2008. V. 390. P. 907–912. https://doi.org/10.1007/s00216-007-1745-6
- Sun S., et al. Preparation of agarose/chitosan composite supermacroporous monolithic cryogels for affinity purification of glycoproteins // J. Sep. Sci. 2012. V. 35. № 7. P. 893–900. https://doi.org/10.1002/jssc.201100940
- Takeshita S., et al. Chemistry of chitosan aerogels: Three-dimensional pore control for tailored applications // Angew. Chemie – Int. Ed. 2021. V. 60. № 18. P. 9828–9851. https://doi.org/10.1002/anie.202003053
- Sampaio G.Y.H., et al. Biodegradable chitosan scaffolds: Effect of genipin crosslinking // Mater. Sci. Forum. 2014. V. 805. P. 116–121. https://doi.org/10.4028/www.scientific.net/MSF.805.116
- Seol Y.J., et al. Chitosan sponges as tissue engineering scaffolds for bone formation // Biotechnol. Lett. 2004. V. 26. № 13. P. 1037–1041. https://doi.org/10.1023/b:bile.0000032962.79531.fd
- Auriemma F., et al. Polymeric cryogels // In: Advances in Polymer Science / ed. Okay O. 2014. V. 263. P. 49–102.ISBN 978-3-319-05845-0
- Plieva F.M., et al. Pore structure of macroporous monolithic cryogels prepared from poly(vinyl alcohol) // J. Appl. Polym. Sci. 2006. V. 100. № 2. P. 1057–1066. https://doi.org/10.1002/app.23200
- Лозинский В.И. Криогели на основе природных и синтетических полимеров: получение, свойства и области применения // Успехи химии. 2002. Т. 71. № 6. С. 489–511. https://doi.org/10.1070/RC2002v071n06ABEH000720
- Lozinsky V.I., et al. Basic Principles of Cryotropic Gelation. 2014. ISBN 9783319058467
- Wartenberg A., et al. Glycosaminoglycan-based cryogels as scaffolds for cell cultivation and tissue regeneration // Molecules. 2021. V. 26. № 18. P. 5597. https://doi.org/10.3390/molecules26185597
- Bakhshpour M., et al. Biomedical applications of polymeric cryogels // Appl. Sci. 2019. V. 9. № 3. P. 553. https://doi.org/10.3390/app9030553
- Nikonorov V.V., et al. Synthesis and characteristics of cryogels of chitosan crosslinked by glutaric aldehyde // Polym. Sci. Ser. A. 2010. V. 52. № 8. P. 828–834. https://doi.org/10.1134/S0965545X10080092
- Zhang H., et al. Control of ice crystal growth and its effect on porous structure of chitosan cryogels // Chem. Eng. Sci. 2019. V. 201. P. 50–57. https://doi.org/10.1016/j.ces.2019.02.026
- Nikonorov V.V., et al. Effect of polymer-precursor molecular mass on the formation and properties of covalently crosslinked chitosan cryogels // Polym. Sci. Ser. A. 2011. V. 53. № 12. P. 1150–1158. https://doi.org/10.1134/S0965545X1112011X
- Veleshko I.E., et al. Sorption of Eu(III) from solutions of covalently cross-linked chitosan cryogels // Fibre Chem. 2011. V. 42. № 6. P. 364–369. https://doi.org/10.1007/s10692-011-9287-2
- Bhat S., et al. Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering // J. R. Soc. Interface. 2011. V. 8. № 57. P. 540–554. https://doi.org/10.1098/rsif.2010.0455
- Bhat S., et al. Cell proliferation on three-dimensional chitosan–agarose–gelatin cryogel scaffolds for tissue engineering applications // J. Biosci. Bioeng. 2012. V. 114. № 6. P. 663–670. https://doi.org/10.1016/j.jbiosc.2012.07.005
- Roberts G.A.F., Taylor K.E. Chitosan gels. 3. The formation of gels by reaction of chitosan with glutaraldehyde // Macromol. Chem. 1989. V. 190. № 5. P. 951–960. https://doi.org/10.1002/macp.1989.021900504
- Henderson T.M.A., et al. Cryogels for biomedical applications // J. Mater. Chem. B. 2013. V. 1. № 21. P. 2682–2695. https://doi.org/10.1039/c3tb20280a
- Privar Y., et al.. Removal of Alizarin Red by supermacroporous cross-linked chitosan monolith sorbents // Prog. Chem. Appl. Chitin its Deriv. 2019. V. XXIV. P. 164–171. https://doi.org/10.15259/PCACD.24.015
- Kang Y., et al. 3D Bioprinting of tumor models for cancer research // ACS Appl. Bio Mater. 2020. V. 3. № 9. P. 5552–5573. https://doi.org/10.1021/acsabm.0c00791
- Kumar A., et al. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices // Biotechnol. Bioeng. 2006. V. 93. № 4. P. 636–646. https://doi.org/10.1002/bit.20719
- Fang J.Y., et al. Tumor bioengineering using a transglutaminase crosslinked hydrogel // PLoS One. 2014. V. 9. № 8. P. e105616. https://doi.org/10.1371/journal.pone.0105616
- Lim S.M., et al. In vitro and in vivo degradation behavior of acetylated chitosan porous beads // J. Biomater. Sci. Polym. Ed. 2008. V. 19. № 4. P. 453–466. https://doi.org/10.1163/156856208783719482
- Islam N., et al. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery // Heliyon. 2019. V. 5. № 5. P. e01684. https://doi.org/10.1016/j.heliyon.2019.e01684
- Tanuma H., et al. Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior // Carbohydr. Polym. 2010. V. 80. № 1. P. 260–265. https://doi.org/10.1016/j.carbpol.2009.11.022
Қосымша файлдар

