CROSSLINKING AGENTS IN THE TARGETED DESIGN OF CHITOSAN-BASED MATERIALS
- Authors: Kildeeva N.R1, Privar Y.O2, Bratskaya S.Y.2,3
-
Affiliations:
- The Kosygin State University of Russia
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
- School of Medicine and Life Sciences, Far East Federal University
- Issue: Vol 87, No 6 (2025)
- Pages: 701-734
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376456
- DOI: https://doi.org/10.7868/S3034543X25060094
- ID: 376456
Cite item
Abstract
Keywords
About the authors
N. R Kildeeva
The Kosygin State University of RussiaMoscow, Russia
Yu. O Privar
Institute of Chemistry, Far Eastern Branch, Russian Academy of SciencesVladivostok, Russia
S. Yu Bratskaya
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences; School of Medicine and Life Sciences, Far East Federal University
Email: sbratska@ich.dvo.ru
Vladivostok, Russia; Ajax Settlement, Russia
References
- Chelu M., et al. Chitosan hydrogels for water purification applications // Gels. 2023. V. 9. № 8. P. 664. https://doi.org/10.3390/gels9080664
- Azarova Y.A., et al. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry // Carbohydr. Polym. 2015. V. 134. P. 680–686. https://doi.org/10.1016/j.carbpol.2015.07.086
- Franconetti A., et al. Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation // Appl. Catal. A Gen. 2016. V. 517. P. 176–186. https://doi.org/10.1016/j.apcata.2016.03.012
- Guibal E. Heterogeneous catalysis on chitosan-based materials: a review // Prog. Polym. Sci. 2005. V. 30. № 1. P. 71–109. https://doi.org/10.1016/j.progpolymsci.2004.12.001
- Tian B., et al. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review // J. Mater. Chem. B. 2020. V. 8. № 44. P. 10050–10064. https://doi.org/10.1039/D0TB01869D
- Tian B., Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review // Int. J. Biol. Macromol. 2023. V. 235. P. 123902. https://doi.org/10.1016/j.ijbiomac.2023.123902
- Berger J., et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications // Eur. J. Pharm. Biopharm. 2004. V. 57. № 1. P. 19–34. https://doi.org/10.1016/S0939-6411(03)00161-9
- Pestov A., Bratskaya S. Chitosan and its derivatives as highly efficient polymer ligands // Molecules. 2016. V. 21. № 3. P. 330. https://doi.org/10.3390/molecules21030330
- Alves N.M., Mano J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications // Int. J. Biol. Macromol. 2008. V. 43. № 5. P. 401–414. https://doi.org/10.1016/j.ijbiomac.2008.09.007
- Dong J., et al. Hydrophilic chitosan: modification pathways and biomedical applications // Russ. Chem. Rev. 2024. V. 93. № 5. P. RCR5120. https://doi.org/10.59761/RCR5120
- Crompton K.E., et al. Morphology and gelation of thermosensitive chitosan hydrogels // Biophys. Chem. 2005. V. 117. № 1. P. 47–53. https://doi.org/10.1016/j.bpc.2005.03.009
- Marin L., et al. Hydrogelation of chitosan with monoaldehydes towards biomaterials with tuned properties // In: New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications. 2021. P. 345–356. https://doi.org/10.1007/978-3-030-57456-7_17
- Yeh Y., et al. The role of aldehyde‐functionalized crosslinkers on the property of chitosan hydrogels // Macromol. Biosci. 2022. V. 22. № 5. P. 2100477. https://doi.org/10.1002/mabi.202100477
- Tsai C.-C., et al. Injectable, shear-thinning, self-healing, and self-cross-linkable benzaldehyde-conjugated chitosan hydrogels as a tissue adhesive // Biomacromolecules. 2024. V. 25. № 2. P. 1084–1095. https://doi.org/10.1021/acs.biomac.3c01117
- Li Q., et al. The design, mechanism and biomedical application of self-healing hydrogels // Chinese Chem. Lett. 2017. V. 28. № 9. P. 1857–1874. https://doi.org/10.1016/j.cclet.2017.05.007
- Pan C., et al. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles // Carbohydr. Polym. 2020. V. 241. P. 116349. https://doi.org/10.1016/j.carbpol.2020.116349
- Liang J., et al. The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite // Polymers (Basel). 2019. V. 11. № 3. P. 491. https://doi.org/10.3390/polym11030491
- Ul’yabaeva G.R., et al. Adsorption of an acid textile dye from aqueous solutions by a chitosan-containing polyvinyl alcohol composite cryogel // Fibre Chem. 2019. V. 51. № 3. P. 199–203. https://doi.org/10.1007/s10692-019-10074-9
- Subramanian A., et al. Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation // J. Biomed. Mater. Res. – Part A. 2005. V. 75. № 3. P. 742–753. https://doi.org/10.1002/jbm.a.30489
- Cha C., et al. Biodegradable polymer crosslinker: Independent control of stiffness, toughness, and hydrogel degradation rate // Adv. Funct. Mater. 2009. V. 19. № 19. P. 3056–3062. https://doi.org/10.1002/adfm.200900865
- Manickam B., et al. ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview // Curr. Drug Deliv. 2014. V. 11. № 1. P. 139–145. https://doi.org/10.2174/15672018113106660059
- Ahmadi F., et al. Chitosan based hydrogels: characteristics and pharmaceutical applications // Res. Pharm. Sci. 2015. V. 10. № 1. P. 1–16.
- Reddy N., et. al. Crosslinking biopolymers for biomedical applications // Trends Biotechnol. 2015. V. 33. № 6. P. 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008
- Yammine P., et al. Types of crosslinkers and their applications in biomaterials and biomembranes // Chem. 2025. V. 7. № 2. P. 61. https://doi.org/10.3390/chemistry7020061
- Ma P.X. Biomimetic materials for tissue engineering // Adv. Drug Deliv. Rev. 2008. V. 60. № 2. P. 184–198. https://doi.org/10.1016/j.addr.2007.08.041
- Fu J., et al. The chitosan hydrogels: from structure to function // New J. Chem. 2018. V. 42. № 21. P. 17162–17180. https://doi.org/10.1039/C8NJ03482F
- Rajabi M., et al. Chitosan hydrogels in 3D printing for biomedical applications // Carbohydr. Polym. 2021. V. 260. P. 117768. https://doi.org/10.1016/j.carbpol.2021.117768
- Hu J., et al. Visible light crosslinkable chitosan hydrogels for tissue engineering // Acta Biomater. 2012. V. 8. № 5. P. 1730–1738. https://doi.org/10.1016/j.actbio.2012.01.029
- Hong F., et al. Chitosan-based hydrogels: from preparation to applications, a review // Food Chem. X. 2024. V. 21. P. 101095. https://doi.org/10.1016/j.fochx.2023.101095
- Jing H., et al. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond // Carbohydr. Polym. 2022. V. 278. P. 118993. https://doi.org/10.1016/j.carbpol.2021.118993
- Enache A.-C., et al. Evaluation of physically and/or chemically modified chitosan hydrogels for proficient release of insoluble nystatin in simulated fluids // Gels. 2022. V. 8. № 8. P. 495. https://doi.org/10.3390/gels8080495
- Ye J., et al. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application // Eur. Polym. J. 2020. V. 139. P. 110024. https://doi.org/10.1016/j.eurpolymj.2020.110024
- Huang S., et al. An overview of dynamic covalent bonds in polymer material and their applications // Eur. Polym. J. 2020. V. 141. P. 110094. https://doi.org/10.1016/j.eurpolymj.2020.110094
- Picchioni F., et. al. Hydrogels based on dynamic covalent and non covalent bonds: A chemistry perspective // Gels. 2018. V. 4. № 1. P. 21. https://doi.org/10.3390/gels4010021
- Li Y., et al. Preparation of chitosan-based injectable hydrogels and its application in 3D cell culture // J. Vis. Exp. 2017. V. 2017. № 127. P. 1–7. https://doi.org/10.3791/56253
- Maiz-Fernández S., et al. Dynamic and self-healable chitosan/hyaluronic acid-based in situ-forming hydrogels // Gels. 2022. V. 8. № 8. P.477. https://doi.org/10.3390/gels8080477
- Pei M., et al. Photocrosslinkable chitosan hydrogels and their biomedical applications // J. Polym. Sci. Part A Polym. Chem. 2019. V. 57. № 18. P. 1862–1871. https://doi.org/10.1002/pola.29305
- Truong V.X., et al. In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering // Biomater. Sci. 2014. V. 2. № 2. P. 167–175. https://doi.org/10.1039/C3BM60159E
- Michel S.E.S., et al. Tunable thiol–ene photo-cross-linked chitosan-based hydrogels for biomedical applications // ACS Appl. Bio Mater. 2020. V. 3. № 11. P. 8075–8083. https://doi.org/10.1021/acsabm.0c01171
- Roas-Escalona N., et al. Chitosan-based hydrogels: influence of crosslinking stategy on rheological properties // Carbohydr. Polym. 2024. V. 341. P. 122329. https://doi.org/10.1016/j.carbpol.2024.122329
- Ruiz-Pardo C., et al. Chitosan hydrogels based on the Diels–Alder click reaction: Rheological and kinetic study // Polymers. 2022. V. 14. № 6. P. 1202. https://doi.org/10.3390/polym14061202
- Carmona P., et al. Glyceraldehyde as an efficient chemical crosslinker agent for the formation of chitosan hydrogels // Gels. 2021. V. 7. № 4. P. 186. https://doi.org/10.3390/gels7040186
- Yu Y., et al. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review // Biomater. Sci. 2021. V. 9. № 5. P. 1583–1597. https://doi.org/10.1039/D0BM01403F
- Martínez-Mejía G., et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions // Colloids Surfaces A. Physicochem. Eng. Asp. 2019. V. 579. P. 123658. https://doi.org/10.1016/j.colsurfa.2019.123658
- Pinto R. V., et al. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications // Mater. Sci. Eng. C. 2020. V. 109. P. 110557. https://doi.org/10.1016/j.msec.2019.110557
- Harish Prashanth K.V., Tharanathan R.N. Crosslinked chitosan – Preparation and characterization // Carbohydr. Res. 2006. V. 341. № 1. P. 169–173. https://doi.org/10.1016/j.carres.2005.10.016
- Beppu M.M., et al. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption // J. Memb. Sci. 2007. V. 301. № 1–2. P. 126–130. https://doi.org/10.1016/j.memsci.2007.06.015
- Pestov A., et al. Chitosan cross-linking with acetaldehyde acetals // Biomimetics. 2022. V. 7. № 1. P. 10. https://doi.org/10.3390/biomimetics7010010
- Mikhailov S.N., et al. Crosslinking of chitosan with dialdehyde derivatives of nucleosides and nucleotides. Mechanism and comparison with glutaraldehyde // Nucleosides, Nucleotides and Nucleic Acids. 2016. V. 35. № 3. P. 114–129. https://doi.org/10.1080/15257770.2015.1114132
- Wegrzynowska-Drzymalska K., et al. Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications // Materials (Basel). 2020. V. 13. № 15. P. 3413. https://doi.org/10.3390/ma13153413
- Monteiro O.A., et al. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system // Int. J. Biol. Macromol. 1999. V. 26. № 2–3. P. 119–128. https://doi.org/10.1016/S0141-8130(99)00068-9
- Li B., et al. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde // Mar. Drugs. 2013. V. 11. № 5. P. 1534–1552. https://doi.org/10.3390/md11051534
- Kil’deeva N.R., et al. Peculiarities of obtaining biocompatible films based on chitosan cross linked by genipin // Polym. Sci. Ser. D. 2017. V. 10. № 2. P. 189–193. https://doi.org/10.1134/S1995421217020095
- Potthast A., et al. Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles // Holzforschung. 2007. V. 61. № 6. P. 662–667. https://doi.org/10.1515/HF.2007.099
- Dyatlov V.A., et al. Change of polysaccharide molecular-weight distribution and fraction homogeneity after periodate oxidation // Chem. Nat. Compd. 2014. V. 50. № 6. P. 973–977. https://doi.org/10.1007/s10600-014-1139-x
- Meade S.J., et al. The role of dicarbonyl compounds in non-enzymatic crosslinking: a structure–activity study // Bioorg. Med. Chem. 2003. V. 11. № 6. P. 853–862. https://doi.org/10.1016/S0968-0896(02)00564-3
- Kildeeva N.R., et al. About mechanism of chitosan cross-linking with glutaraldehyde // Russ. J. Bioorganic Chem. 2009. V. 35. № 3. P. 360–369. https://doi.org/10.1134/S106816200903011X
- Mikhailov S.N., Kildeeva N.R. Mechanisms of chemical cross-linking of chitosan with aldehyde derivatives // Izv. Ufim. Nauchnogo Tsentra RAN. 2018. V. 2. № 3. P. 67–71. https://doi.org/10.31040/2222-8349-2018-2-3-67-71
- Kawase M., et al. Application og glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment // Biol. Pharm. Bull. 1997. V. 20. № 6. P. 708–710. https://doi.org/10.1248/bpb.20.708
- Martínez-Mejía, G., et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions // Colloids Surfaces A Physicochem. Eng. Asp. 2019. V. 579. P. 123658. https://doi.org/10.1016/j.colsurfa.2019.123658
- Hoffmann B., et al. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering // J. Mater. Sci. Mater. Med. 2009. V. 20. P. 1495–1503. https://doi.org/10.1007/s10856-009-3707-3
- Mi F.-L., et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant // Biomaterials. 2002. V. 23. № 1. P. 181–191. https://doi.org/10.1016/S0142-9612(01)00094-1
- Ji C., et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2 // Acta Biomater. 2011. V. 7. № 4. P. 1653–1664. https://doi.org/10.1016/j.actbio.2010.11.043
- Kil’deeva N.R., et al. Biodegradable scaffolds based on chitosan: Preparation, properties and use for the cultivation of animal cells // Appl. Biochem. Microbiol. 2016. V. 52. P. 515–524. https://doi.org/10.1134/S0003683816050094
- Lai J.-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye // Int. J. Mol. Sci. 2012. V. 13. № 9. P. 10970–10985. https://doi.org/10.3390/ijms130910970
- Mi F.-L., et al. In vitro evaluation of a chitosan membrane cross-linked with genipin // J. Biomater. Sci. Polym. Ed. 2001. V. 12. № 8. P. 835–850. https://doi.org/10.1163/156856201753113051
- Sazhnev N.A., et al. Preparation of chitosan cryostructurates with controlled porous morphology and their use as 3D-scaffolds for the cultivation of animal cells // Appl. Biochem. Microbiol. 2018. V. 54. № 5. P. 459–467. https://doi.org/10.1134/S0003683818050162
- Olaru A.-M., et al. Biocompatible chitosan based hydrogels for potential application in local tumour therapy // Carbohydr. Polym. 2018. V. 179. P. 59–70. https://doi.org/10.1016/j.carbpol.2017.09.066
- Privar Y., et al. Chitosan cryogels cross-linked with 1,1,3-triglycidyloxypropane: Mechanical properties and cytotoxicity for cancer cell 3D cultures // Biomimetics. 2023. V. 8. № 2. P. 228. https://doi.org/10.3390/biomimetics8020228
- Privar Y., et al. Chitosan gels and cryogels cross-linked with diglycidyl ethers of ethylene glycol and polyethylene glycol in acidic media // Biomacromolecules. 2019. V. 20. № 4. P. 1635–1643. https://doi.org/10.1021/acs.biomac.8b01817
- Rinaudo M. New way to crosslink chitosan in aqueous solution // Eur. Polym. J. 2010. V. 46. № 7. P. 1537–1544. https://doi.org/10.1016/j.eurpolymj.2010.04.012
- Singh A., et al. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde // Bull. Mater. Sci. 2006. V. 29. № 3. P. 233–238. https://doi.org/10.1007/BF02706490
- Du W., et al. Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper (II) from aqueous solution // J. Appl. Polym. Sci. 2009. V. 111. № 6. P. 2881–2885. https://doi.org/10.1002/app.29247
- Zakharova A.N., et al. Dialdehyde derivatives of nucleosides and nucleotides as novel crosslinking reagents and their comparison with glutaraldehyde // Collection Symposium Series. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. 2011. V. 12. P. 254–258. https://doi.org/10.1135/css201112254
- Михайлов С.Н. и др. Об определении степени сшивки хитозана в реакции с диальдегидами // Известия уфимского научного центра РАН. 2016. Т. 3. № 1. С. 72–75.
- Azarova A.I., et al. Gel formation in polymeric composites for modification of fibrous materials // Fibre Chem. 2011. V. 43. № 2. P. 129–133. https://doi.org/10.1007/s10692-011-9319-y
- Wang W., et al. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents // Int. J. Biol. Macromol. 2023. V. 236. P. 123913. https://doi.org/10.1016/j.ijbiomac.2023.123913
- Muzzarelli R.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids // Carbohydr. Polym. 2009. V. 77. № 1. P. 1–9. https://doi.org/10.1016/j.carbpol.2009.01.016
- Butler M.F., et al. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin // J. Polym. Sci. Part A Polym. Chem. 2003. V. 41. № 24. P. 3941–3953. https://doi.org/10.1002/pola.10960
- Mi F., et al. Characterization of ring‐opening polymerization of genipin and pH‐dependent cross‐linking reactions between chitosan and genipin // J. Polym. Sci. Part A Polym. Chem. 2005. V. 43. № 10. P. 1985–2000. https://doi.org/10.1002/pola.20669
- Muzzarelli R., et al. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone // Mar. Drugs. 2015. V. 13. № 12. P. 7314–7338. https://doi.org/10.3390/md13127068
- Delmar K., et al. The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin // Carbohydr. Polym. 2015. V. 127. P. 28–37. https://doi.org/10.1016/j.carbpol.2015.03.039
- Kildeeva N., et al. Influence of genipin crosslinking on the properties of chitosan-based films // Polymers (Basel). 2020. V. 12. № 5. P. 1086. https://doi.org/10.3390/polym12051086
- Nikonorov V.V., et al. Crosslinking in solutions of chitosan in the presence of a crosslinking reagent for production of fibre biocatalysts // Fibre Chem. 2006. V. 38. № 2. P. 95–97. https://doi.org/10.1007/s10692-006-0047-7
- Кильдеева Н.Р. и др. Структурообразование в растворах хитозана в присутствии сшивающего реагента при получении биологически активных полимерных материалов // Известия высших учебных заведений // Химия и химическая технология. 2007. Т. 50. № 3. С. 53–56.
- Frick J.M., et al. Influence of glutaraldehyde crosslinking and alkaline post-treatment on the properties of chitosan-based films // J. Polym. Environ. 2018. V. 26. № 7. P. 2748–2757. https://doi.org/10.1007/s10924-017-1166-3
- Oliveira A.C.S., et al. Effect of glutaraldehyde/glycerol ratios on the properties of chitosan films // J. Food Process. Preserv. 2021. V. 45. № 1. P. 15060. https://doi.org/10.1111/jfpp.15060
- Kovaříček P., et al. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes // J. Am. Chem. Soc. 2012. V. 134. № 22. P. 9446–9455. https://doi.org/10.1021/ja302793c
- Wilson A., et al. Functional systems with orthogonal dynamic covalent bonds // Chem. Soc. Rev. 2014. V. 43. № 6. P. 1948–1962. https://doi.org/10.1039/c3cs60342c
- Wang L.L., et al. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks // J. Biomed. Mater. Res. – Part A. 2018. V. 106. № 4. P. 865–875. https://doi.org/10.1002/jbm.a.36323
- Guo B., et al. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration // Acta Biomater. 2019. V. 84. P. 180–193. https://doi.org/10.1016/j.actbio.2018.12.008
- Marin L., et al. Antifungal vanillin-imino-chitosan biodynameric films // J. Mater. Chem. B. 2013. V. 27. № 1. P. 3353–3358. https://doi.org/10.1039/c3tb20558d
- Iftime M.M., et al. Chitosan crosslinking with a vanillin isomer toward self-healing hydrogels with antifungal activity // Int. J. Biol. Macromol. 2022. V. 205. P. 574–586. https://doi.org/10.1016/j.ijbiomac.2022.02.077
- Iftime M., et al. New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release // Int. J. Biol. Macromol. 2020. V. 160. P. 398–408. https://doi.org/10.1016/j.ijbiomac.2020.05.207
- Ailincai D., et al. Iminoboronate-chitooligosaccharides hydrogels with strong antimicrobial activity for biomedical applications // Carbohydr. Polym. 2022. V. 276. P. 118727. https://doi.org/10.1016/j.carbpol.2021.118727
- Anisiei A., et al. Imination of microporous chitosan fibers—A route to biomaterials with “on demand” antimicrobial activity and biodegradation for wound dressings // Pharmaceutics. 2022. V. 14. № 1. P. 117. https://doi.org/10.3390/pharmaceutics14010117
- Marin L., et al. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry // Carbohydr. Polym. 2017. V. 170. P. 60–71. https://doi.org/10.1016/j.carbpol.2017.04.055
- Chen H., et al. One-step dynamic imine chemistry for preparation of chitosan-stabilized emulsions using a natural aldehyde: acid trigger mechanism and regulation and gastric delivery // J. Agric. Food Chem. 2020. V. 68. № 19. P. 5412–5425. https://doi.org/10.1021/acs.jafc.9b08301
- Jagadish R.S., et al. Preparation of N-vanillyl chitosan and 4-hydroxybenzyl chitosan and their physico-mechanical, optical, barrier, and antimicrobial properties // Carbohydr. Polym. 2012. V. 87. № 1. P. 110–116. https://doi.org/10.1016/j.carbpol.2011.07.024
- Marin L., et al. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties // Carbohydr. Polym. 2015. V. 117. P. 762–770. https://doi.org/10.1016/j.carbpol.2014.10.050
- Arya S.S., et al. Vanillin : a review on the therapeutic prospects of a popular flavouring molecule // Adv. Tradit. Med. 2021. V. 21. P. 1–17. https://doi.org/10.1007/s13596-020-00531-w
- Marin L., et al. Imino-chitosan biodynamers // Chem. Commun. 2012. V. 48. № 70. P. 8778–8780. https://doi.org/10.1039/c2cc34337a
- Xu C., et al. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages // Polym. Test. 2018. V. 66. P. 155–163. https://doi.org/10.1016/j.polymertesting.2018.01.016
- Iftime M.M., et al. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels // Carbohydr. Polym. 2017. V. 165. P. 39–50. https://doi.org/10.1016/j.carbpol.2017.02.027
- Liu C., et al. Multiple chiroptical switches and logic circuit based on salicyl‒ imine‒chitosan hydrogel // Carbohydr. Polym. 2021. V. 257. P. 117534. https://doi.org/10.1016/j.carbpol.2020.117534
- Ailincai D., et al. Hydrogels based on imino-chitosan amphiphiles as a matrix for drug delivery systems // Polymers (Basel). 2020. V. 12. № 11. P. 2687. https://doi.org/10.3390/polym12112687
- Hu J., et al. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering // Carbohydr. Polym. 2021. V. 271. P. 118440. https://doi.org/10.1016/j.carbpol.2021.118440
- Hunger M., et al. Double crosslinking of chitosan/vanillin hydrogels as a basis for mechanically strong gradient scaffolds for tissue engineering // Eng. Biomater. 2020. V. 155. P. 2–11. https://doi.org/10.34821/eng.biomat.155.2020.2-11
- Zhang Z.H., et al. Enhancing mechanical properties of chitosan films via modification with vanillin // Int. J. Biol. Macromol. 2015. V. 81. P. 638–643. https://doi.org/10.1016/j.ijbiomac.2015.08.042
- Damiri F., et al. Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release // J. Chem. 2020. V. 2020. P. 8747639. https://doi.org/10.1155/2020/8747639
- Qu J., et al. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy // Acta Biomater. 2017. V. 58. P. 168–180. https://doi.org/10.1016/j.actbio.2017.06.001
- Bratskaya S., et al. Carboxyalkylchitosan-based hydrogels with “imine clip”: enhanced stability and amino acids-induced disassembly under physiological conditions // Carbohydr. Polym. 2021. V. 274. P. 118618. https://doi.org/10.1016/j.carbpol.2021.118618
- Ding C., et al. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO // Biomacromolecules. 2010. V. 11. № 4. P. 1043–1051. https://doi.org/10.1021/bm1000179
- Bratskaya S., et al. Stimuli-responsive dual cross-linked N-carboxyethylchitosan hydrogels with tunable dissolution rate // Gels. 2021. V. 7. № 4. P. 188. https://doi.org/10.3390/gels7040188
- Qu X., Yang Z. Benzoic-imine-based physiological-pH-responsive materials for biomedical applications // Chemistry – An Asian Journal. 2016. V. 11. № 19. P. 2633–2641. https://doi.org/10.1002/asia.201600452
- Andreica B.-I., et al. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection // Carbohydr. Polym. 2024. V. 342. P. 122389. https://doi.org/10.1016/j.carbpol.2024.122389
- Skatova A.V., et al. Hydrogels of N-(2-carboxyethyl)chitosan with vanillin // Polym. Sci. Ser. B. 2022. V. 64. № 5. P. 699–706. https://doi.org/10.1134/S1560090422700361
- Bhattarai N., et al. PEG-grafted chitosan as an injectable thermoreversible hydrogel // Macromol. Biosci. 2005. V. 5. № 2. P. 107–111. https://doi.org/10.1002/mabi.200400140
- Vijayan A., et al. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing // Sci. Rep. 2019. V. 9. № 1. P. 19165. https://doi.org/10.1038/s41598-019-55214-7
- De Boulle K., et al. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers // Dermatologic Surg. 2013. V. 39. № 12. P. 1758–1766. https://doi.org/10.1111/dsu.12301
- Lei Y., et al. Hybrid pericardium with VEGF-loaded hyaluronic acid hydrogel coating to improve the biological properties of bioprosthetic heart valves // Macromol. Biosci. 2019. V. 19. № 6. P. 1800390. https://doi.org/10.1002/mabi.201800390
- Hendriks M., et al. Bioprostheses and its alternative fixation // J. Long. Term. Eff. Med. Implants. 2017. V. 27. № 2–4. P. 125–142. https://doi.org/10.1615/JLongTermEffMedImplants.v27.i2-4.40
- Wende F.J., et al. Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether // Int. J. Biol. Macromol. 2019. V. 131. P. 812–820. https://doi.org/10.1016/j.ijbiomac.2019.03.020
- Xue Y., et al. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether // RSC Advances. 2020. V. 10. № 12. P. 7206–7213. https://doi.org/10.1039/c9ra09271d
- Gámiz González M.A., et al. Synthesis of highly swellable hydrogels of water-soluble carboxymethyl chitosan and poly(ethylene glycol) // Polym. Int. 2017. V. 66. № 11. P. 1624–1632. https://doi.org/10.1002/pi.5424
- Tripodo G., et al. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity // Carbohydr. Polym. 2018. V. 198. P. 124–130. https://doi.org/10.1016/j.carbpol.2018.06.061
- Balasubramani K.P., et al. Mechanism and kinetics of curing of diglycidyl ether of bisphenol a (DGEBA) resin by chitosan // Polym. Eng. Sci. 2016. V. 57. № 8. P. 865–874. https://doi.org/10.1002/pen.24463
- Kiuchi H., et al. Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films // J. Appl. Polym. Sci. 2008. V. 107. № 6. P. 2823–3830. https://doi.org/10.1002/app.27546
- Liu R., et al. Solution blowing of chitosan/PVA hydrogel nanofiber mats // Carbohydr. Polym. 2014. V. 101. P. 1116–1121. https://doi.org/10.1016/j.carbpol.2013.10.056
- Shechter L., et al. Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides // Ind. Eng. Chem. 1956. V. 48. № 1. P. 86–93. https://doi.org/10.1021/ie50553a028
- Privar Y., et al. Gelation and cryogelation of chitosan: Origin of low efficiency of diglycidyl ethers as cross-linkers in acetic acid solutions // Polysaccharides. 2024. V. 5. № 4. P. 731–742. https://doi.org/10.3390/polysaccharides5040046
- Shechter L., et al. Glycidyl ether reactions with amines // Ind. Eng. Chem. 1956. V. 48. № 1. P. 94–97. https://doi.org/10.1021/ie50553a029
- Privar Y., et al. Tuning mechanical properties, swelling, and enzymatic degradation of chitosan cryogels using diglycidyl ethers of glycols with different chain length as cross-linkers // Gels. 2024. V. 10. № 7. P. 483. https://doi.org/10.3390/gels10070483
- Boroda A., et al. Sponge-like scaffolds for colorectal cancer 3D models: Substrate-driven difference in micro-tumors morphology // Biomimetics. 2022. V. 7. № 2. P. 56. https://doi.org/10.3390/biomimetics7020056
- Gun’ko V.M., et al. Cryogels: Morphological, structural and adsorption characterisation // Adv. Colloid Interface Sci. 2013. V. 187–188. P. 1–46. https://doi.org/10.1016/j.cis.2012.11.001
- Sen T., et al. Hierarchical porous hybrid chitosan scaffolds with tailorable mechanical properties // Mater. Lett. 2017. V. 209. P. 528–531. https://doi.org/10.1016/j.matlet.2017.08.088
- Kil’deeva N.R., et al. Modification of chitosan cryogels by pyridoxal phosphate to improve sorption capacity // Fibre Chem. 2012. V. 43. № 6. P. 426–432. https://doi.org/10.1007/s10692-012-9377-9
- Savina I.N., et al. Design and assessment of biodegradable macroporous cryogels as advanced tissue engineering and drug carrying materials // Gels. 2021. V. 7. № 3. P. 79. https://doi.org/10.3390/gels7030079
- Ng V.W.L., et al. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections // Adv. Drug Deliv. Rev. 2014. V. 78. P. 46–62. https://doi.org/10.1016/j.addr.2014.10.028
- Shen X., et al. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications // Green Chem. 2015. V. 18. № 1. P. 53–75. https://doi.org/10.1039/c5gc02396c
- Yang W.Y., Thirumavalavan M., Lee J.F. Effects of porogen and cross-linking agents on improved properties of silica-supported macroporous chitosan membranes for enzyme immobilization // J. Membr. Biol. 2015. V. 248. № 2. P. 231–240. https://doi.org/10.1007/s00232-014-9763-8
- Bhattarai N., Gunn J., Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery // Adv. Drug Deliv. Rev. 2010. V. 62. № 1. P. 83–99. https://doi.org/10.1016/j.addr.2009.07.019
- Andrabi S.M., et al. Supermacroporous hybrid polymeric cryogels for efficient removal of metallic contaminants and microbes from water // Int. J. Polym. Mater. 2016. V. 65. № 12. P. 636–645. https://doi.org/10.1080/00914037.2016.1157795
- Hedström M., et al. Monolithic macroporous albumin / chitosan cryogel structure : a new matrix for enzyme immobilization // Anal Bioanal Chem. 2008. V. 390. P. 907–912. https://doi.org/10.1007/s00216-007-1745-6
- Sun S., et al. Preparation of agarose/chitosan composite supermacroporous monolithic cryogels for affinity purification of glycoproteins // J. Sep. Sci. 2012. V. 35. № 7. P. 893–900. https://doi.org/10.1002/jssc.201100940
- Takeshita S., et al. Chemistry of chitosan aerogels: Three-dimensional pore control for tailored applications // Angew. Chemie – Int. Ed. 2021. V. 60. № 18. P. 9828–9851. https://doi.org/10.1002/anie.202003053
- Sampaio G.Y.H., et al. Biodegradable chitosan scaffolds: Effect of genipin crosslinking // Mater. Sci. Forum. 2014. V. 805. P. 116–121. https://doi.org/10.4028/www.scientific.net/MSF.805.116
- Seol Y.J., et al. Chitosan sponges as tissue engineering scaffolds for bone formation // Biotechnol. Lett. 2004. V. 26. № 13. P. 1037–1041. https://doi.org/10.1023/b:bile.0000032962.79531.fd
- Auriemma F., et al. Polymeric cryogels // In: Advances in Polymer Science / ed. Okay O. 2014. V. 263. P. 49–102.ISBN 978-3-319-05845-0
- Plieva F.M., et al. Pore structure of macroporous monolithic cryogels prepared from poly(vinyl alcohol) // J. Appl. Polym. Sci. 2006. V. 100. № 2. P. 1057–1066. https://doi.org/10.1002/app.23200
- Лозинский В.И. Криогели на основе природных и синтетических полимеров: получение, свойства и области применения // Успехи химии. 2002. Т. 71. № 6. С. 489–511. https://doi.org/10.1070/RC2002v071n06ABEH000720
- Lozinsky V.I., et al. Basic Principles of Cryotropic Gelation. 2014. ISBN 9783319058467
- Wartenberg A., et al. Glycosaminoglycan-based cryogels as scaffolds for cell cultivation and tissue regeneration // Molecules. 2021. V. 26. № 18. P. 5597. https://doi.org/10.3390/molecules26185597
- Bakhshpour M., et al. Biomedical applications of polymeric cryogels // Appl. Sci. 2019. V. 9. № 3. P. 553. https://doi.org/10.3390/app9030553
- Nikonorov V.V., et al. Synthesis and characteristics of cryogels of chitosan crosslinked by glutaric aldehyde // Polym. Sci. Ser. A. 2010. V. 52. № 8. P. 828–834. https://doi.org/10.1134/S0965545X10080092
- Zhang H., et al. Control of ice crystal growth and its effect on porous structure of chitosan cryogels // Chem. Eng. Sci. 2019. V. 201. P. 50–57. https://doi.org/10.1016/j.ces.2019.02.026
- Nikonorov V.V., et al. Effect of polymer-precursor molecular mass on the formation and properties of covalently crosslinked chitosan cryogels // Polym. Sci. Ser. A. 2011. V. 53. № 12. P. 1150–1158. https://doi.org/10.1134/S0965545X1112011X
- Veleshko I.E., et al. Sorption of Eu(III) from solutions of covalently cross-linked chitosan cryogels // Fibre Chem. 2011. V. 42. № 6. P. 364–369. https://doi.org/10.1007/s10692-011-9287-2
- Bhat S., et al. Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering // J. R. Soc. Interface. 2011. V. 8. № 57. P. 540–554. https://doi.org/10.1098/rsif.2010.0455
- Bhat S., et al. Cell proliferation on three-dimensional chitosan–agarose–gelatin cryogel scaffolds for tissue engineering applications // J. Biosci. Bioeng. 2012. V. 114. № 6. P. 663–670. https://doi.org/10.1016/j.jbiosc.2012.07.005
- Roberts G.A.F., Taylor K.E. Chitosan gels. 3. The formation of gels by reaction of chitosan with glutaraldehyde // Macromol. Chem. 1989. V. 190. № 5. P. 951–960. https://doi.org/10.1002/macp.1989.021900504
- Henderson T.M.A., et al. Cryogels for biomedical applications // J. Mater. Chem. B. 2013. V. 1. № 21. P. 2682–2695. https://doi.org/10.1039/c3tb20280a
- Privar Y., et al.. Removal of Alizarin Red by supermacroporous cross-linked chitosan monolith sorbents // Prog. Chem. Appl. Chitin its Deriv. 2019. V. XXIV. P. 164–171. https://doi.org/10.15259/PCACD.24.015
- Kang Y., et al. 3D Bioprinting of tumor models for cancer research // ACS Appl. Bio Mater. 2020. V. 3. № 9. P. 5552–5573. https://doi.org/10.1021/acsabm.0c00791
- Kumar A., et al. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices // Biotechnol. Bioeng. 2006. V. 93. № 4. P. 636–646. https://doi.org/10.1002/bit.20719
- Fang J.Y., et al. Tumor bioengineering using a transglutaminase crosslinked hydrogel // PLoS One. 2014. V. 9. № 8. P. e105616. https://doi.org/10.1371/journal.pone.0105616
- Lim S.M., et al. In vitro and in vivo degradation behavior of acetylated chitosan porous beads // J. Biomater. Sci. Polym. Ed. 2008. V. 19. № 4. P. 453–466. https://doi.org/10.1163/156856208783719482
- Islam N., et al. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery // Heliyon. 2019. V. 5. № 5. P. e01684. https://doi.org/10.1016/j.heliyon.2019.e01684
- Tanuma H., et al. Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior // Carbohydr. Polym. 2010. V. 80. № 1. P. 260–265. https://doi.org/10.1016/j.carbpol.2009.11.022
Supplementary files


