CROSSLINKING AGENTS IN THE TARGETED DESIGN OF CHITOSAN-BASED MATERIALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review systematizes data on the mechanisms and features of using commercially available crosslinking agents — aldehydes (glutaraldehyde, genipin, aromatic monoaldehydes) and diglycidyl ethers — for the fabrication of chitosan- based materials. It is demonstrated that the choice of crosslinking agent, method, and conditions (pH, temperature, nature of the acid in the chitosan solution) enables a targeted control over the morphology, physicochemical properties, swelling and degradation kinetics, as well as the biocompatibility of the resulting hydrogels, films, and porous materials. The development of crosslinking strategies, including formations of dynamic covalent bonds and usage of macromolecular crosslinking agents, opens prospects for fabrication of injectable, self- healing, and stimulus- responsive systems for biomedical applications. Special attention is given to the cytotoxicity of traditional crosslinking agents through the use of less toxic alternatives (genipin, diglycidyl ethers) and methods that reduce the degree of crosslinking without significantly compromising the mechanical properties of the materials.

About the authors

N. R Kildeeva

The Kosygin State University of Russia

Moscow, Russia

Yu. O Privar

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Vladivostok, Russia

S. Yu Bratskaya

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences; School of Medicine and Life Sciences, Far East Federal University

Email: sbratska@ich.dvo.ru
Vladivostok, Russia; Ajax Settlement, Russia

References

  1. Chelu M., et al. Chitosan hydrogels for water purification applications // Gels. 2023. V. 9. № 8. P. 664. https://doi.org/10.3390/gels9080664
  2. Azarova Y.A., et al. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry // Carbohydr. Polym. 2015. V. 134. P. 680–686. https://doi.org/10.1016/j.carbpol.2015.07.086
  3. Franconetti A., et al. Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation // Appl. Catal. A Gen. 2016. V. 517. P. 176–186. https://doi.org/10.1016/j.apcata.2016.03.012
  4. Guibal E. Heterogeneous catalysis on chitosan-based materials: a review // Prog. Polym. Sci. 2005. V. 30. № 1. P. 71–109. https://doi.org/10.1016/j.progpolymsci.2004.12.001
  5. Tian B., et al. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review // J. Mater. Chem. B. 2020. V. 8. № 44. P. 10050–10064. https://doi.org/10.1039/D0TB01869D
  6. Tian B., Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review // Int. J. Biol. Macromol. 2023. V. 235. P. 123902. https://doi.org/10.1016/j.ijbiomac.2023.123902
  7. Berger J., et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications // Eur. J. Pharm. Biopharm. 2004. V. 57. № 1. P. 19–34. https://doi.org/10.1016/S0939-6411(03)00161-9
  8. Pestov A., Bratskaya S. Chitosan and its derivatives as highly efficient polymer ligands // Molecules. 2016. V. 21. № 3. P. 330. https://doi.org/10.3390/molecules21030330
  9. Alves N.M., Mano J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications // Int. J. Biol. Macromol. 2008. V. 43. № 5. P. 401–414. https://doi.org/10.1016/j.ijbiomac.2008.09.007
  10. Dong J., et al. Hydrophilic chitosan: modification pathways and biomedical applications // Russ. Chem. Rev. 2024. V. 93. № 5. P. RCR5120. https://doi.org/10.59761/RCR5120
  11. Crompton K.E., et al. Morphology and gelation of thermosensitive chitosan hydrogels // Biophys. Chem. 2005. V. 117. № 1. P. 47–53. https://doi.org/10.1016/j.bpc.2005.03.009
  12. Marin L., et al. Hydrogelation of chitosan with monoaldehydes towards biomaterials with tuned properties // In: New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications. 2021. P. 345–356. https://doi.org/10.1007/978-3-030-57456-7_17
  13. Yeh Y., et al. The role of aldehyde‐functionalized crosslinkers on the property of chitosan hydrogels // Macromol. Biosci. 2022. V. 22. № 5. P. 2100477. https://doi.org/10.1002/mabi.202100477
  14. Tsai C.-C., et al. Injectable, shear-thinning, self-healing, and self-cross-linkable benzaldehyde-conjugated chitosan hydrogels as a tissue adhesive // Biomacromolecules. 2024. V. 25. № 2. P. 1084–1095. https://doi.org/10.1021/acs.biomac.3c01117
  15. Li Q., et al. The design, mechanism and biomedical application of self-healing hydrogels // Chinese Chem. Lett. 2017. V. 28. № 9. P. 1857–1874. https://doi.org/10.1016/j.cclet.2017.05.007
  16. Pan C., et al. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles // Carbohydr. Polym. 2020. V. 241. P. 116349. https://doi.org/10.1016/j.carbpol.2020.116349
  17. Liang J., et al. The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite // Polymers (Basel). 2019. V. 11. № 3. P. 491. https://doi.org/10.3390/polym11030491
  18. Ul’yabaeva G.R., et al. Adsorption of an acid textile dye from aqueous solutions by a chitosan-containing polyvinyl alcohol composite cryogel // Fibre Chem. 2019. V. 51. № 3. P. 199–203. https://doi.org/10.1007/s10692-019-10074-9
  19. Subramanian A., et al. Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation // J. Biomed. Mater. Res. – Part A. 2005. V. 75. № 3. P. 742–753. https://doi.org/10.1002/jbm.a.30489
  20. Cha C., et al. Biodegradable polymer crosslinker: Independent control of stiffness, toughness, and hydrogel degradation rate // Adv. Funct. Mater. 2009. V. 19. № 19. P. 3056–3062. https://doi.org/10.1002/adfm.200900865
  21. Manickam B., et al. ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview // Curr. Drug Deliv. 2014. V. 11. № 1. P. 139–145. https://doi.org/10.2174/15672018113106660059
  22. Ahmadi F., et al. Chitosan based hydrogels: characteristics and pharmaceutical applications // Res. Pharm. Sci. 2015. V. 10. № 1. P. 1–16.
  23. Reddy N., et. al. Crosslinking biopolymers for biomedical applications // Trends Biotechnol. 2015. V. 33. № 6. P. 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008
  24. Yammine P., et al. Types of crosslinkers and their applications in biomaterials and biomembranes // Chem. 2025. V. 7. № 2. P. 61. https://doi.org/10.3390/chemistry7020061
  25. Ma P.X. Biomimetic materials for tissue engineering // Adv. Drug Deliv. Rev. 2008. V. 60. № 2. P. 184–198. https://doi.org/10.1016/j.addr.2007.08.041
  26. Fu J., et al. The chitosan hydrogels: from structure to function // New J. Chem. 2018. V. 42. № 21. P. 17162–17180. https://doi.org/10.1039/C8NJ03482F
  27. Rajabi M., et al. Chitosan hydrogels in 3D printing for biomedical applications // Carbohydr. Polym. 2021. V. 260. P. 117768. https://doi.org/10.1016/j.carbpol.2021.117768
  28. Hu J., et al. Visible light crosslinkable chitosan hydrogels for tissue engineering // Acta Biomater. 2012. V. 8. № 5. P. 1730–1738. https://doi.org/10.1016/j.actbio.2012.01.029
  29. Hong F., et al. Chitosan-based hydrogels: from preparation to applications, a review // Food Chem. X. 2024. V. 21. P. 101095. https://doi.org/10.1016/j.fochx.2023.101095
  30. Jing H., et al. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond // Carbohydr. Polym. 2022. V. 278. P. 118993. https://doi.org/10.1016/j.carbpol.2021.118993
  31. Enache A.-C., et al. Evaluation of physically and/or chemically modified chitosan hydrogels for proficient release of insoluble nystatin in simulated fluids // Gels. 2022. V. 8. № 8. P. 495. https://doi.org/10.3390/gels8080495
  32. Ye J., et al. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application // Eur. Polym. J. 2020. V. 139. P. 110024. https://doi.org/10.1016/j.eurpolymj.2020.110024
  33. Huang S., et al. An overview of dynamic covalent bonds in polymer material and their applications // Eur. Polym. J. 2020. V. 141. P. 110094. https://doi.org/10.1016/j.eurpolymj.2020.110094
  34. Picchioni F., et. al. Hydrogels based on dynamic covalent and non covalent bonds: A chemistry perspective // Gels. 2018. V. 4. № 1. P. 21. https://doi.org/10.3390/gels4010021
  35. Li Y., et al. Preparation of chitosan-based injectable hydrogels and its application in 3D cell culture // J. Vis. Exp. 2017. V. 2017. № 127. P. 1–7. https://doi.org/10.3791/56253
  36. Maiz-Fernández S., et al. Dynamic and self-healable chitosan/hyaluronic acid-based in situ-forming hydrogels // Gels. 2022. V. 8. № 8. P.477. https://doi.org/10.3390/gels8080477
  37. Pei M., et al. Photocrosslinkable chitosan hydrogels and their biomedical applications // J. Polym. Sci. Part A Polym. Chem. 2019. V. 57. № 18. P. 1862–1871. https://doi.org/10.1002/pola.29305
  38. Truong V.X., et al. In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering // Biomater. Sci. 2014. V. 2. № 2. P. 167–175. https://doi.org/10.1039/C3BM60159E
  39. Michel S.E.S., et al. Tunable thiol–ene photo-cross-linked chitosan-based hydrogels for biomedical applications // ACS Appl. Bio Mater. 2020. V. 3. № 11. P. 8075–8083. https://doi.org/10.1021/acsabm.0c01171
  40. Roas-Escalona N., et al. Chitosan-based hydrogels: influence of crosslinking stategy on rheological properties // Carbohydr. Polym. 2024. V. 341. P. 122329. https://doi.org/10.1016/j.carbpol.2024.122329
  41. Ruiz-Pardo C., et al. Chitosan hydrogels based on the Diels–Alder click reaction: Rheological and kinetic study // Polymers. 2022. V. 14. № 6. P. 1202. https://doi.org/10.3390/polym14061202
  42. Carmona P., et al. Glyceraldehyde as an efficient chemical crosslinker agent for the formation of chitosan hydrogels // Gels. 2021. V. 7. № 4. P. 186. https://doi.org/10.3390/gels7040186
  43. Yu Y., et al. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review // Biomater. Sci. 2021. V. 9. № 5. P. 1583–1597. https://doi.org/10.1039/D0BM01403F
  44. Martínez-Mejía G., et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions // Colloids Surfaces A. Physicochem. Eng. Asp. 2019. V. 579. P. 123658. https://doi.org/10.1016/j.colsurfa.2019.123658
  45. Pinto R. V., et al. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications // Mater. Sci. Eng. C. 2020. V. 109. P. 110557. https://doi.org/10.1016/j.msec.2019.110557
  46. Harish Prashanth K.V., Tharanathan R.N. Crosslinked chitosan – Preparation and characterization // Carbohydr. Res. 2006. V. 341. № 1. P. 169–173. https://doi.org/10.1016/j.carres.2005.10.016
  47. Beppu M.M., et al. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption // J. Memb. Sci. 2007. V. 301. № 1–2. P. 126–130. https://doi.org/10.1016/j.memsci.2007.06.015
  48. Pestov A., et al. Chitosan cross-linking with acetaldehyde acetals // Biomimetics. 2022. V. 7. № 1. P. 10. https://doi.org/10.3390/biomimetics7010010
  49. Mikhailov S.N., et al. Crosslinking of chitosan with dialdehyde derivatives of nucleosides and nucleotides. Mechanism and comparison with glutaraldehyde // Nucleosides, Nucleotides and Nucleic Acids. 2016. V. 35. № 3. P. 114–129. https://doi.org/10.1080/15257770.2015.1114132
  50. Wegrzynowska-Drzymalska K., et al. Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications // Materials (Basel). 2020. V. 13. № 15. P. 3413. https://doi.org/10.3390/ma13153413
  51. Monteiro O.A., et al. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system // Int. J. Biol. Macromol. 1999. V. 26. № 2–3. P. 119–128. https://doi.org/10.1016/S0141-8130(99)00068-9
  52. Li B., et al. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde // Mar. Drugs. 2013. V. 11. № 5. P. 1534–1552. https://doi.org/10.3390/md11051534
  53. Kil’deeva N.R., et al. Peculiarities of obtaining biocompatible films based on chitosan cross linked by genipin // Polym. Sci. Ser. D. 2017. V. 10. № 2. P. 189–193. https://doi.org/10.1134/S1995421217020095
  54. Potthast A., et al. Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles // Holzforschung. 2007. V. 61. № 6. P. 662–667. https://doi.org/10.1515/HF.2007.099
  55. Dyatlov V.A., et al. Change of polysaccharide molecular-weight distribution and fraction homogeneity after periodate oxidation // Chem. Nat. Compd. 2014. V. 50. № 6. P. 973–977. https://doi.org/10.1007/s10600-014-1139-x
  56. Meade S.J., et al. The role of dicarbonyl compounds in non-enzymatic crosslinking: a structure–activity study // Bioorg. Med. Chem. 2003. V. 11. № 6. P. 853–862. https://doi.org/10.1016/S0968-0896(02)00564-3
  57. Kildeeva N.R., et al. About mechanism of chitosan cross-linking with glutaraldehyde // Russ. J. Bioorganic Chem. 2009. V. 35. № 3. P. 360–369. https://doi.org/10.1134/S106816200903011X
  58. Mikhailov S.N., Kildeeva N.R. Mechanisms of chemical cross-linking of chitosan with aldehyde derivatives // Izv. Ufim. Nauchnogo Tsentra RAN. 2018. V. 2. № 3. P. 67–71. https://doi.org/10.31040/2222-8349-2018-2-3-67-71
  59. Kawase M., et al. Application og glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment // Biol. Pharm. Bull. 1997. V. 20. № 6. P. 708–710. https://doi.org/10.1248/bpb.20.708
  60. Martínez-Mejía, G., et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions // Colloids Surfaces A Physicochem. Eng. Asp. 2019. V. 579. P. 123658. https://doi.org/10.1016/j.colsurfa.2019.123658
  61. Hoffmann B., et al. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering // J. Mater. Sci. Mater. Med. 2009. V. 20. P. 1495–1503. https://doi.org/10.1007/s10856-009-3707-3
  62. Mi F.-L., et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant // Biomaterials. 2002. V. 23. № 1. P. 181–191. https://doi.org/10.1016/S0142-9612(01)00094-1
  63. Ji C., et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2 // Acta Biomater. 2011. V. 7. № 4. P. 1653–1664. https://doi.org/10.1016/j.actbio.2010.11.043
  64. Kil’deeva N.R., et al. Biodegradable scaffolds based on chitosan: Preparation, properties and use for the cultivation of animal cells // Appl. Biochem. Microbiol. 2016. V. 52. P. 515–524. https://doi.org/10.1134/S0003683816050094
  65. Lai J.-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye // Int. J. Mol. Sci. 2012. V. 13. № 9. P. 10970–10985. https://doi.org/10.3390/ijms130910970
  66. Mi F.-L., et al. In vitro evaluation of a chitosan membrane cross-linked with genipin // J. Biomater. Sci. Polym. Ed. 2001. V. 12. № 8. P. 835–850. https://doi.org/10.1163/156856201753113051
  67. Sazhnev N.A., et al. Preparation of chitosan cryostructurates with controlled porous morphology and their use as 3D-scaffolds for the cultivation of animal cells // Appl. Biochem. Microbiol. 2018. V. 54. № 5. P. 459–467. https://doi.org/10.1134/S0003683818050162
  68. Olaru A.-M., et al. Biocompatible chitosan based hydrogels for potential application in local tumour therapy // Carbohydr. Polym. 2018. V. 179. P. 59–70. https://doi.org/10.1016/j.carbpol.2017.09.066
  69. Privar Y., et al. Chitosan cryogels cross-linked with 1,1,3-triglycidyloxypropane: Mechanical properties and cytotoxicity for cancer cell 3D cultures // Biomimetics. 2023. V. 8. № 2. P. 228. https://doi.org/10.3390/biomimetics8020228
  70. Privar Y., et al. Chitosan gels and cryogels cross-linked with diglycidyl ethers of ethylene glycol and polyethylene glycol in acidic media // Biomacromolecules. 2019. V. 20. № 4. P. 1635–1643. https://doi.org/10.1021/acs.biomac.8b01817
  71. Rinaudo M. New way to crosslink chitosan in aqueous solution // Eur. Polym. J. 2010. V. 46. № 7. P. 1537–1544. https://doi.org/10.1016/j.eurpolymj.2010.04.012
  72. Singh A., et al. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde // Bull. Mater. Sci. 2006. V. 29. № 3. P. 233–238. https://doi.org/10.1007/BF02706490
  73. Du W., et al. Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper (II) from aqueous solution // J. Appl. Polym. Sci. 2009. V. 111. № 6. P. 2881–2885. https://doi.org/10.1002/app.29247
  74. Zakharova A.N., et al. Dialdehyde derivatives of nucleosides and nucleotides as novel crosslinking reagents and their comparison with glutaraldehyde // Collection Symposium Series. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. 2011. V. 12. P. 254–258. https://doi.org/10.1135/css201112254
  75. Михайлов С.Н. и др. Об определении степени сшивки хитозана в реакции с диальдегидами // Известия уфимского научного центра РАН. 2016. Т. 3. № 1. С. 72–75.
  76. Azarova A.I., et al. Gel formation in polymeric composites for modification of fibrous materials // Fibre Chem. 2011. V. 43. № 2. P. 129–133. https://doi.org/10.1007/s10692-011-9319-y
  77. Wang W., et al. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents // Int. J. Biol. Macromol. 2023. V. 236. P. 123913. https://doi.org/10.1016/j.ijbiomac.2023.123913
  78. Muzzarelli R.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids // Carbohydr. Polym. 2009. V. 77. № 1. P. 1–9. https://doi.org/10.1016/j.carbpol.2009.01.016
  79. Butler M.F., et al. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin // J. Polym. Sci. Part A Polym. Chem. 2003. V. 41. № 24. P. 3941–3953. https://doi.org/10.1002/pola.10960
  80. Mi F., et al. Characterization of ring‐opening polymerization of genipin and pH‐dependent cross‐linking reactions between chitosan and genipin // J. Polym. Sci. Part A Polym. Chem. 2005. V. 43. № 10. P. 1985–2000. https://doi.org/10.1002/pola.20669
  81. Muzzarelli R., et al. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone // Mar. Drugs. 2015. V. 13. № 12. P. 7314–7338. https://doi.org/10.3390/md13127068
  82. Delmar K., et al. The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin // Carbohydr. Polym. 2015. V. 127. P. 28–37. https://doi.org/10.1016/j.carbpol.2015.03.039
  83. Kildeeva N., et al. Influence of genipin crosslinking on the properties of chitosan-based films // Polymers (Basel). 2020. V. 12. № 5. P. 1086. https://doi.org/10.3390/polym12051086
  84. Nikonorov V.V., et al. Crosslinking in solutions of chitosan in the presence of a crosslinking reagent for production of fibre biocatalysts // Fibre Chem. 2006. V. 38. № 2. P. 95–97. https://doi.org/10.1007/s10692-006-0047-7
  85. Кильдеева Н.Р. и др. Структурообразование в растворах хитозана в присутствии сшивающего реагента при получении биологически активных полимерных материалов // Известия высших учебных заведений // Химия и химическая технология. 2007. Т. 50. № 3. С. 53–56.
  86. Frick J.M., et al. Influence of glutaraldehyde crosslinking and alkaline post-treatment on the properties of chitosan-based films // J. Polym. Environ. 2018. V. 26. № 7. P. 2748–2757. https://doi.org/10.1007/s10924-017-1166-3
  87. Oliveira A.C.S., et al. Effect of glutaraldehyde/glycerol ratios on the properties of chitosan films // J. Food Process. Preserv. 2021. V. 45. № 1. P. 15060. https://doi.org/10.1111/jfpp.15060
  88. Kovaříček P., et al. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes // J. Am. Chem. Soc. 2012. V. 134. № 22. P. 9446–9455. https://doi.org/10.1021/ja302793c
  89. Wilson A., et al. Functional systems with orthogonal dynamic covalent bonds // Chem. Soc. Rev. 2014. V. 43. № 6. P. 1948–1962. https://doi.org/10.1039/c3cs60342c
  90. Wang L.L., et al. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks // J. Biomed. Mater. Res. – Part A. 2018. V. 106. № 4. P. 865–875. https://doi.org/10.1002/jbm.a.36323
  91. Guo B., et al. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration // Acta Biomater. 2019. V. 84. P. 180–193. https://doi.org/10.1016/j.actbio.2018.12.008
  92. Marin L., et al. Antifungal vanillin-imino-chitosan biodynameric films // J. Mater. Chem. B. 2013. V. 27. № 1. P. 3353–3358. https://doi.org/10.1039/c3tb20558d
  93. Iftime M.M., et al. Chitosan crosslinking with a vanillin isomer toward self-healing hydrogels with antifungal activity // Int. J. Biol. Macromol. 2022. V. 205. P. 574–586. https://doi.org/10.1016/j.ijbiomac.2022.02.077
  94. Iftime M., et al. New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release // Int. J. Biol. Macromol. 2020. V. 160. P. 398–408. https://doi.org/10.1016/j.ijbiomac.2020.05.207
  95. Ailincai D., et al. Iminoboronate-chitooligosaccharides hydrogels with strong antimicrobial activity for biomedical applications // Carbohydr. Polym. 2022. V. 276. P. 118727. https://doi.org/10.1016/j.carbpol.2021.118727
  96. Anisiei A., et al. Imination of microporous chitosan fibers—A route to biomaterials with “on demand” antimicrobial activity and biodegradation for wound dressings // Pharmaceutics. 2022. V. 14. № 1. P. 117. https://doi.org/10.3390/pharmaceutics14010117
  97. Marin L., et al. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry // Carbohydr. Polym. 2017. V. 170. P. 60–71. https://doi.org/10.1016/j.carbpol.2017.04.055
  98. Chen H., et al. One-step dynamic imine chemistry for preparation of chitosan-stabilized emulsions using a natural aldehyde: acid trigger mechanism and regulation and gastric delivery // J. Agric. Food Chem. 2020. V. 68. № 19. P. 5412–5425. https://doi.org/10.1021/acs.jafc.9b08301
  99. Jagadish R.S., et al. Preparation of N-vanillyl chitosan and 4-hydroxybenzyl chitosan and their physico-mechanical, optical, barrier, and antimicrobial properties // Carbohydr. Polym. 2012. V. 87. № 1. P. 110–116. https://doi.org/10.1016/j.carbpol.2011.07.024
  100. Marin L., et al. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties // Carbohydr. Polym. 2015. V. 117. P. 762–770. https://doi.org/10.1016/j.carbpol.2014.10.050
  101. Arya S.S., et al. Vanillin : a review on the therapeutic prospects of a popular flavouring molecule // Adv. Tradit. Med. 2021. V. 21. P. 1–17. https://doi.org/10.1007/s13596-020-00531-w
  102. Marin L., et al. Imino-chitosan biodynamers // Chem. Commun. 2012. V. 48. № 70. P. 8778–8780. https://doi.org/10.1039/c2cc34337a
  103. Xu C., et al. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages // Polym. Test. 2018. V. 66. P. 155–163. https://doi.org/10.1016/j.polymertesting.2018.01.016
  104. Iftime M.M., et al. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels // Carbohydr. Polym. 2017. V. 165. P. 39–50. https://doi.org/10.1016/j.carbpol.2017.02.027
  105. Liu C., et al. Multiple chiroptical switches and logic circuit based on salicyl‒ imine‒chitosan hydrogel // Carbohydr. Polym. 2021. V. 257. P. 117534. https://doi.org/10.1016/j.carbpol.2020.117534
  106. Ailincai D., et al. Hydrogels based on imino-chitosan amphiphiles as a matrix for drug delivery systems // Polymers (Basel). 2020. V. 12. № 11. P. 2687. https://doi.org/10.3390/polym12112687
  107. Hu J., et al. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering // Carbohydr. Polym. 2021. V. 271. P. 118440. https://doi.org/10.1016/j.carbpol.2021.118440
  108. Hunger M., et al. Double crosslinking of chitosan/vanillin hydrogels as a basis for mechanically strong gradient scaffolds for tissue engineering // Eng. Biomater. 2020. V. 155. P. 2–11. https://doi.org/10.34821/eng.biomat.155.2020.2-11
  109. Zhang Z.H., et al. Enhancing mechanical properties of chitosan films via modification with vanillin // Int. J. Biol. Macromol. 2015. V. 81. P. 638–643. https://doi.org/10.1016/j.ijbiomac.2015.08.042
  110. Damiri F., et al. Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release // J. Chem. 2020. V. 2020. P. 8747639. https://doi.org/10.1155/2020/8747639
  111. Qu J., et al. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy // Acta Biomater. 2017. V. 58. P. 168–180. https://doi.org/10.1016/j.actbio.2017.06.001
  112. Bratskaya S., et al. Carboxyalkylchitosan-based hydrogels with “imine clip”: enhanced stability and amino acids-induced disassembly under physiological conditions // Carbohydr. Polym. 2021. V. 274. P. 118618. https://doi.org/10.1016/j.carbpol.2021.118618
  113. Ding C., et al. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO // Biomacromolecules. 2010. V. 11. № 4. P. 1043–1051. https://doi.org/10.1021/bm1000179
  114. Bratskaya S., et al. Stimuli-responsive dual cross-linked N-carboxyethylchitosan hydrogels with tunable dissolution rate // Gels. 2021. V. 7. № 4. P. 188. https://doi.org/10.3390/gels7040188
  115. Qu X., Yang Z. Benzoic-imine-based physiological-pH-responsive materials for biomedical applications // Chemistry – An Asian Journal. 2016. V. 11. № 19. P. 2633–2641. https://doi.org/10.1002/asia.201600452
  116. Andreica B.-I., et al. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection // Carbohydr. Polym. 2024. V. 342. P. 122389. https://doi.org/10.1016/j.carbpol.2024.122389
  117. Skatova A.V., et al. Hydrogels of N-(2-carboxyethyl)chitosan with vanillin // Polym. Sci. Ser. B. 2022. V. 64. № 5. P. 699–706. https://doi.org/10.1134/S1560090422700361
  118. Bhattarai N., et al. PEG-grafted chitosan as an injectable thermoreversible hydrogel // Macromol. Biosci. 2005. V. 5. № 2. P. 107–111. https://doi.org/10.1002/mabi.200400140
  119. Vijayan A., et al. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing // Sci. Rep. 2019. V. 9. № 1. P. 19165. https://doi.org/10.1038/s41598-019-55214-7
  120. De Boulle K., et al. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers // Dermatologic Surg. 2013. V. 39. № 12. P. 1758–1766. https://doi.org/10.1111/dsu.12301
  121. Lei Y., et al. Hybrid pericardium with VEGF-loaded hyaluronic acid hydrogel coating to improve the biological properties of bioprosthetic heart valves // Macromol. Biosci. 2019. V. 19. № 6. P. 1800390. https://doi.org/10.1002/mabi.201800390
  122. Hendriks M., et al. Bioprostheses and its alternative fixation // J. Long. Term. Eff. Med. Implants. 2017. V. 27. № 2–4. P. 125–142. https://doi.org/10.1615/JLongTermEffMedImplants.v27.i2-4.40
  123. Wende F.J., et al. Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether // Int. J. Biol. Macromol. 2019. V. 131. P. 812–820. https://doi.org/10.1016/j.ijbiomac.2019.03.020
  124. Xue Y., et al. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether // RSC Advances. 2020. V. 10. № 12. P. 7206–7213. https://doi.org/10.1039/c9ra09271d
  125. Gámiz González M.A., et al. Synthesis of highly swellable hydrogels of water-soluble carboxymethyl chitosan and poly(ethylene glycol) // Polym. Int. 2017. V. 66. № 11. P. 1624–1632. https://doi.org/10.1002/pi.5424
  126. Tripodo G., et al. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity // Carbohydr. Polym. 2018. V. 198. P. 124–130. https://doi.org/10.1016/j.carbpol.2018.06.061
  127. Balasubramani K.P., et al. Mechanism and kinetics of curing of diglycidyl ether of bisphenol a (DGEBA) resin by chitosan // Polym. Eng. Sci. 2016. V. 57. № 8. P. 865–874. https://doi.org/10.1002/pen.24463
  128. Kiuchi H., et al. Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films // J. Appl. Polym. Sci. 2008. V. 107. № 6. P. 2823–3830. https://doi.org/10.1002/app.27546
  129. Liu R., et al. Solution blowing of chitosan/PVA hydrogel nanofiber mats // Carbohydr. Polym. 2014. V. 101. P. 1116–1121. https://doi.org/10.1016/j.carbpol.2013.10.056
  130. Shechter L., et al. Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides // Ind. Eng. Chem. 1956. V. 48. № 1. P. 86–93. https://doi.org/10.1021/ie50553a028
  131. Privar Y., et al. Gelation and cryogelation of chitosan: Origin of low efficiency of diglycidyl ethers as cross-linkers in acetic acid solutions // Polysaccharides. 2024. V. 5. № 4. P. 731–742. https://doi.org/10.3390/polysaccharides5040046
  132. Shechter L., et al. Glycidyl ether reactions with amines // Ind. Eng. Chem. 1956. V. 48. № 1. P. 94–97. https://doi.org/10.1021/ie50553a029
  133. Privar Y., et al. Tuning mechanical properties, swelling, and enzymatic degradation of chitosan cryogels using diglycidyl ethers of glycols with different chain length as cross-linkers // Gels. 2024. V. 10. № 7. P. 483. https://doi.org/10.3390/gels10070483
  134. Boroda A., et al. Sponge-like scaffolds for colorectal cancer 3D models: Substrate-driven difference in micro-tumors morphology // Biomimetics. 2022. V. 7. № 2. P. 56. https://doi.org/10.3390/biomimetics7020056
  135. Gun’ko V.M., et al. Cryogels: Morphological, structural and adsorption characterisation // Adv. Colloid Interface Sci. 2013. V. 187–188. P. 1–46. https://doi.org/10.1016/j.cis.2012.11.001
  136. Sen T., et al. Hierarchical porous hybrid chitosan scaffolds with tailorable mechanical properties // Mater. Lett. 2017. V. 209. P. 528–531. https://doi.org/10.1016/j.matlet.2017.08.088
  137. Kil’deeva N.R., et al. Modification of chitosan cryogels by pyridoxal phosphate to improve sorption capacity // Fibre Chem. 2012. V. 43. № 6. P. 426–432. https://doi.org/10.1007/s10692-012-9377-9
  138. Savina I.N., et al. Design and assessment of biodegradable macroporous cryogels as advanced tissue engineering and drug carrying materials // Gels. 2021. V. 7. № 3. P. 79. https://doi.org/10.3390/gels7030079
  139. Ng V.W.L., et al. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections // Adv. Drug Deliv. Rev. 2014. V. 78. P. 46–62. https://doi.org/10.1016/j.addr.2014.10.028
  140. Shen X., et al. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications // Green Chem. 2015. V. 18. № 1. P. 53–75. https://doi.org/10.1039/c5gc02396c
  141. Yang W.Y., Thirumavalavan M., Lee J.F. Effects of porogen and cross-linking agents on improved properties of silica-supported macroporous chitosan membranes for enzyme immobilization // J. Membr. Biol. 2015. V. 248. № 2. P. 231–240. https://doi.org/10.1007/s00232-014-9763-8
  142. Bhattarai N., Gunn J., Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery // Adv. Drug Deliv. Rev. 2010. V. 62. № 1. P. 83–99. https://doi.org/10.1016/j.addr.2009.07.019
  143. Andrabi S.M., et al. Supermacroporous hybrid polymeric cryogels for efficient removal of metallic contaminants and microbes from water // Int. J. Polym. Mater. 2016. V. 65. № 12. P. 636–645. https://doi.org/10.1080/00914037.2016.1157795
  144. Hedström M., et al. Monolithic macroporous albumin / chitosan cryogel structure : a new matrix for enzyme immobilization // Anal Bioanal Chem. 2008. V. 390. P. 907–912. https://doi.org/10.1007/s00216-007-1745-6
  145. Sun S., et al. Preparation of agarose/chitosan composite supermacroporous monolithic cryogels for affinity purification of glycoproteins // J. Sep. Sci. 2012. V. 35. № 7. P. 893–900. https://doi.org/10.1002/jssc.201100940
  146. Takeshita S., et al. Chemistry of chitosan aerogels: Three-dimensional pore control for tailored applications // Angew. Chemie – Int. Ed. 2021. V. 60. № 18. P. 9828–9851. https://doi.org/10.1002/anie.202003053
  147. Sampaio G.Y.H., et al. Biodegradable chitosan scaffolds: Effect of genipin crosslinking // Mater. Sci. Forum. 2014. V. 805. P. 116–121. https://doi.org/10.4028/www.scientific.net/MSF.805.116
  148. Seol Y.J., et al. Chitosan sponges as tissue engineering scaffolds for bone formation // Biotechnol. Lett. 2004. V. 26. № 13. P. 1037–1041. https://doi.org/10.1023/b:bile.0000032962.79531.fd
  149. Auriemma F., et al. Polymeric cryogels // In: Advances in Polymer Science / ed. Okay O. 2014. V. 263. P. 49–102.ISBN 978-3-319-05845-0
  150. Plieva F.M., et al. Pore structure of macroporous monolithic cryogels prepared from poly(vinyl alcohol) // J. Appl. Polym. Sci. 2006. V. 100. № 2. P. 1057–1066. https://doi.org/10.1002/app.23200
  151. Лозинский В.И. Криогели на основе природных и синтетических полимеров: получение, свойства и области применения // Успехи химии. 2002. Т. 71. № 6. С. 489–511. https://doi.org/10.1070/RC2002v071n06ABEH000720
  152. Lozinsky V.I., et al. Basic Principles of Cryotropic Gelation. 2014. ISBN 9783319058467
  153. Wartenberg A., et al. Glycosaminoglycan-based cryogels as scaffolds for cell cultivation and tissue regeneration // Molecules. 2021. V. 26. № 18. P. 5597. https://doi.org/10.3390/molecules26185597
  154. Bakhshpour M., et al. Biomedical applications of polymeric cryogels // Appl. Sci. 2019. V. 9. № 3. P. 553. https://doi.org/10.3390/app9030553
  155. Nikonorov V.V., et al. Synthesis and characteristics of cryogels of chitosan crosslinked by glutaric aldehyde // Polym. Sci. Ser. A. 2010. V. 52. № 8. P. 828–834. https://doi.org/10.1134/S0965545X10080092
  156. Zhang H., et al. Control of ice crystal growth and its effect on porous structure of chitosan cryogels // Chem. Eng. Sci. 2019. V. 201. P. 50–57. https://doi.org/10.1016/j.ces.2019.02.026
  157. Nikonorov V.V., et al. Effect of polymer-precursor molecular mass on the formation and properties of covalently crosslinked chitosan cryogels // Polym. Sci. Ser. A. 2011. V. 53. № 12. P. 1150–1158. https://doi.org/10.1134/S0965545X1112011X
  158. Veleshko I.E., et al. Sorption of Eu(III) from solutions of covalently cross-linked chitosan cryogels // Fibre Chem. 2011. V. 42. № 6. P. 364–369. https://doi.org/10.1007/s10692-011-9287-2
  159. Bhat S., et al. Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering // J. R. Soc. Interface. 2011. V. 8. № 57. P. 540–554. https://doi.org/10.1098/rsif.2010.0455
  160. Bhat S., et al. Cell proliferation on three-dimensional chitosan–agarose–gelatin cryogel scaffolds for tissue engineering applications // J. Biosci. Bioeng. 2012. V. 114. № 6. P. 663–670. https://doi.org/10.1016/j.jbiosc.2012.07.005
  161. Roberts G.A.F., Taylor K.E. Chitosan gels. 3. The formation of gels by reaction of chitosan with glutaraldehyde // Macromol. Chem. 1989. V. 190. № 5. P. 951–960. https://doi.org/10.1002/macp.1989.021900504
  162. Henderson T.M.A., et al. Cryogels for biomedical applications // J. Mater. Chem. B. 2013. V. 1. № 21. P. 2682–2695. https://doi.org/10.1039/c3tb20280a
  163. Privar Y., et al.. Removal of Alizarin Red by supermacroporous cross-linked chitosan monolith sorbents // Prog. Chem. Appl. Chitin its Deriv. 2019. V. XXIV. P. 164–171. https://doi.org/10.15259/PCACD.24.015
  164. Kang Y., et al. 3D Bioprinting of tumor models for cancer research // ACS Appl. Bio Mater. 2020. V. 3. № 9. P. 5552–5573. https://doi.org/10.1021/acsabm.0c00791
  165. Kumar A., et al. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices // Biotechnol. Bioeng. 2006. V. 93. № 4. P. 636–646. https://doi.org/10.1002/bit.20719
  166. Fang J.Y., et al. Tumor bioengineering using a transglutaminase crosslinked hydrogel // PLoS One. 2014. V. 9. № 8. P. e105616. https://doi.org/10.1371/journal.pone.0105616
  167. Lim S.M., et al. In vitro and in vivo degradation behavior of acetylated chitosan porous beads // J. Biomater. Sci. Polym. Ed. 2008. V. 19. № 4. P. 453–466. https://doi.org/10.1163/156856208783719482
  168. Islam N., et al. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery // Heliyon. 2019. V. 5. № 5. P. e01684. https://doi.org/10.1016/j.heliyon.2019.e01684
  169. Tanuma H., et al. Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior // Carbohydr. Polym. 2010. V. 80. № 1. P. 260–265. https://doi.org/10.1016/j.carbpol.2009.11.022

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).