NON-COVALENT ASSEMBLY AND CONTROL OF CHARGE TRANSPORT IN ULTRATHIN FILMS BASED ON GRAPHENE OXIDE AND ORGANIC CHROMOPHORES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new strategy of controlled non- covalent assembly is applied for tuning of the properties of ultrathin film hybrids based on graphene oxide (GO), tetracarboxyphenylporphyrin (TCPP), and polydiacetylene surfactant (PDA). It is shown how, using layer- by- layer deposition or one- step self- assembly of components at the air/water interface, it is possible to influence the mechanisms of energy and charge transfer while maintaining the chemical composition of the ultrathin film. Zinc acetate was used to integrate the active components of the hybrid through coordination bonds with the carboxyl groups of the GO and organic components. Atomic force microscopy showed that layer- by- layer assembly results in an ordered structure with a dense monolayer of GO at the base, an intermediate layer of TCPP, and an upper layer of PDA crystallites. Single- stage assembly leads to the formation of a mixed layer of GO- Zn2+- TCPP with a folded GO morphology covered with PDA. Spectroscopic studies revealed Förster resonance energy transfer in both hybrids, in which porphyrin acts as both an energy donor and acceptor depending on the structural form of the polydiacetylene surfactant associated with it. Hybrids obtained by layer- by- layer assembly, when integrated into photovoltaic cells with an electron- hole transport layer, demonstrated pronounced diode properties and significant photoresponse due to effective spatial separation of charges and directed transport in the layered structure. Hybrids obtained in a single stage produce symmetrical volt- ampere curves and low photoresponse due to exciton recombination in a disordered structure. The results demonstrate the fundamental possibility of controlling charge transport in photoactive hybrids by controlling their supramolecular organization through the choice of assembly method.

About the authors

K. O. Radygin

Moscow State University

Moscow, Russia

A. I. Zvyagina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

A. E. Aleksandrov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

M. A. Kalinina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia

References

  1. Gomez-Romero P. Hybrid organic-inorganic materials – in search of synergic activity // Adv. Mater. 2001. V. 13. № 3. P. 163–174. https://doi.org/10.1002/1521-4095(200102)13:3163::AID-ADMA1633.0.CO;2-U
  2. Anbuechzhiyan G., Mubarak N.M., Karri R.R., Khalid M. A synergistic effect on enriching the Mg-Al-Zn alloy-based hybrid composite properties // Sci. Rep. 2022. V. 12. № 1. P. 20053. https://doi.org/10.1038/s41598-022-24427-8
  3. Luo X., Yang G., Schubert D.W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy // Adv. Compos. Hybrid Mater. 2022. V. 5. № 1. P. 250–262. https://doi.org/10.1007/s42114-021-00332-y
  4. Li Y., Yang T., Yu T., Zheng L., Liao K. Synergistic effect of hybrid carbon nanotube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites // J. Mater. Chem. 2011. V. 21. № 29. P. 10844–10851. https://doi.org/10.1039/c1jm11359c
  5. Charitos I., Georgousis G., Klonos P.A., Kyritsis A., Mouzakis D., Raptis Y., Kontos A., Kontou E. The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites // Polym. Test. 2021. V. 95. P. 107102. https://doi.org/10.1016/j.polymertesting.2021.107102
  6. Lim E. The effects of molecular packing behavior of small-molecule acceptors in ternary organic solar cells // Appl. Sci. 2021. V. 11. № 2. P. 755. https://doi.org/10.3390/app11020755
  7. Qin B., Yin Z., Tang X., Zhang S., Wu Y., Xu J.-F., Zhang X. Supramolecular polymer chemistry: From structural control to functional assembly // Prog. Polym. Sci. 2020. V. 100. P. 101167. https://doi.org/10.1016/j.progpolymsc.2019.101167
  8. Bronstein H., Nielsen C.B., Schroeder B.C., McCulloch I. The role of chemical design in the performance of organic semiconductors // Nat. Rev. Chem. 2020. V. 4. № 2. P. 66–77. https://doi.org/10.1038/s41570-019-0152-9
  9. Nugmanova A.G., Kalinina M.A. Supramolecular self-assembly of hybrid colloidal systems // Colloid J. 2022. V. 84. № 5. P. 642–662. https://doi.org/10.1134/S1061933X22700107
  10. Gusarova E.A., Zvyagina A.I., Aleksandrov A.E., Averin A.A., Tameev A.R., Kalinina M.A. Combinatorial non-covalent assembly of graphene oxide and chromophores into hybrid nanofilms for organic electronics // New J. Chem. 2023. V. 47. № 6. P. 2847–2857. https://doi.org/10.1039/d2nj05281d
  11. Hagfeldt A., Boschloo G., Sun L., Klos L., Pettersson H. Dye-sensitized solar cells // Chem. Rev. 2010. V. 110. № 11. P. 6595–6663. https://doi.org/10.1021/cr900356p
  12. Ghosh A., Bhandari S., Furuta H., Ishida M. Open-chain tetrapyrroles meet metal ions in the functional molecular material science // Chempluschem. 2025. V. 90. No 6. P. e202500090. https://doi.org/10.1002/cplu.202500090
  13. Лобанов А.В., Мельников М.Я. Фотокаталитическая активность иммобилизованных металлокомплексов тетрапирролов в средах, содержащих пероксид водорода // Химическая безопасность. 2019. Т. 3. No 1. C. 28-34. https://doi.org/10.25514/CHS.2019.1.15001
  14. Lewandowska-Andralojc A., Gacka E., Pedzinski T., Burdzinski G., Lindner A., O’Brien J.M., Senge M.O., Siklitskaya A., Kubas A., Marciniak B., Walkowiak-Kulikowska J. Understanding structure-properties relationships of porphyrin linked to graphene oxide through π - π - stacking or covalent amide bonds // Sci. Rep. 2022. V. 12. No 1. P. 13420. https://doi.org/10.1038/s41598-022-16931-8
  15. Limburg B., Thomas J.O., Holloway G., Sadeghi H., Sangtarash S., Hou I.C., Cremers J., Narita A., Müllen K., Lambert C.J., Briggs G.A.D., Mol J.A., Anderson H.L. Anchor groups for graphene-porphyrin single-molecule transistors // Adv. Funct. Mater. 2018. V. 28. No 45. P. 1803629. https://doi.org/10.1002/adfm.201803629
  16. Hu S., Jia Y. Function of tetra (4-aminophenyl) porphyrin in altering the electronic performances of reduced graphene oxide-based field effect transistor // Molecules. 2019. V. 24. No 21. P. 3960. https://doi.org/10.3390/molecules24213960
  17. Kawata T., Ono T., Kanai Y., Ohno Y., Maehashi K., Inoue K., Matsumoto K. Improved sensitivity of a graphene FET biosensor using porphyrin linkers // Jpn. J. Appl. Phys. 2018. V. 57. No 6. P. 065103. https://doi.org/10.7567/JJAP.57.065103
  18. Karousis N., Sandanayaka A.S.D., Hasobe T., Economopoulos S.P., Sarantopoulou E., Tagmatarchis N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties // J. Mater. Chem. 2011. V. 21. No 1. P. 109-117. https://doi.org/10.1039/C0JM00991A
  19. Ahmed A., Devi G., Kapahi A., Kundan S., Katoch S., Bajju G.D. Covalently linked porphyrin-graphene oxide nanocomposite: synthesis, characterization and catalytic activity // J. Mater. Sci. Mater. Electron. 2019. V. 30. No 22. P. 19738-19751. https://doi.org/10.1007/s10854-019-02324-7
  20. Monteiro A.R., Neves M.G.P.M.S., Trindade T. Functionalization of graphene oxide with porphyrins: synthetic routes and biological applications // Chempluschem. 2020. V. 85. No 8. P. 1857-1880. https://doi.org/10.1002/cplu.202000455
  21. Meshkov I.N., Zvyagina A.I., Shiryaev A.A., Nickolsky M.S., Baranchikov A.E., Ezhov A.A., Nugmanova A.G., Enakieva Y.Y., Gorbunova Y.G., Arslanov V.V., Kalinina M.A. Understanding self-assembly of porphyrin-based SURMOFs: How layered minerals can be useful // Langmuir. 2018. V. 34. No 18. P. 5184-5192. https://doi.org/10.1021/acs.langmuir.7b04384
  22. Mandal H., Chakali M., Venkatesan M., Bangal P.R. Hot electron transfer from CdTe quantum dot (QD) to porphyrin and ultrafast electron transfer from porphyrin to CdTe QD in CdTe QD-tetrakis(4-carboxyphenyl)porphyrin nanocomposites // J. Phys. Chem. C. 2021. V. 125. No 8. P. 4750-4763. https://doi.org/10.1021/acs.jpcc.0c08229
  23. Saito A., Urai Y., Itoh K. Infrared and resonance raman spectroscopic study on the photopolymerization process of the langmuir-blodgett films of a diacetylene monocarboxylic acid, 10,12-pentacosadiynoic acid // Langmuir. 1996. V. 12. No 16. P. 3938-3944. https://doi.org/10.1021/la951503z
  24. Reanprayoon C., Gasiorowski J., Sukwattanasinitt M., Sariciftci N.S., Thamyongkit P. Polydiacetylene-nested porphyrin as a potential light harvesting component in bulk heterojunction solar cells // RSC Adv. 2014. V. 4. No 6. P. 3045-3050. https://doi.org/10.1039/c3ra45373a
  25. Gusarova E.A., Zvyagina A.I., Aleksandrov A.E., Averin A.A., Tameev A.R., Kalinina M.A. Combinatorial non-covalent assembly of graphene oxide and chromophores into hybrid nanofilms for organic electronics // New J. Chem. 2023. V. 47. No 6. P. 2847-2857. https://doi.org/10.1039/D2NJ05281D
  26. Zvyagina A.I., Shiryaev A.A., Baranchikov A.E., Chernyshev V. V., Enakieva Y.Y., Raitman O.A., Ezhov A.A., Meshkov I.N., Grishanov D.A., Ivanova O.S., Gorbunova Y.G., Arslanov V. V., Kalinina M.A. Layer-by-layer assembly of porphyrin-based metal-organic frameworks on solids decorated with graphene oxide // New J. Chem. 2017. V. 41. No 3. P. 948-957. https://doi.org/10.1039/C6NJ03202H
  27. Zvyagina A.I., Alexandrov A.E., Averin A.A., Senchikhin I.N., Sokolov M.R., Ezhov A.A., Tameev A.R., Kalinina M.A. One-step interfacial integration of graphene oxide and organic chromophores into multicomponent nanohybrids with photoelectric properties // Langmuir. 2022. V. 38. № 49. P. 15145-15155. https://doi.org/10.1021/acs.langmuir.2c02155
  28. Zvyagina A.I., Melnikova E.K., Averin A.A., Baranchikov A.E., Tameev A.R., Malov V. V., Ezhov A.A., Grishanov D.A. Gun J., Ermakova E. V., Arslanov V. V., Kalinina M.A. A facile approach to fabricating ultrathin layers of reduced graphene oxide on planar solids // Carbon N. Y. 2018. V. 134. P. 62-70. https://doi.org/10.1016/j.carbon.2018.03.075
  29. Adler A.D., Longo F.R., Kampas F., Kim J. On the preparation of metalloporphyrins // J. Inorg. Nucl. Chem. 1970. V. 32. № 7. P. 2443-2445. https://doi.org/10.1016/0022-1902(70)80535-8
  30. Yeboah A., Sowah-Kuma D., Bu W., Paige M.F. Single-molecule fluorescence spectroscopy of phase-separated 10,12-pentacosadynoic acid films // J. Phys. Chem. B. 2021. V. 125. № 15. P. 3953-3962. https://doi.org/10.1021/acs.jpcb.1c00951
  31. Medintz I., Hildebrandt N. FRET - Förster Resonance Energy Transfer // FRET - Förster Resonance Energy Transfer: From Theory to Applications / ed. Medintz I., Hildebrandt N. 2013. 1-791 p. https://doi.org/10.1002/9783527656028

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).