NON-COVALENT ASSEMBLY AND CONTROL OF CHARGE TRANSPORT IN ULTRATHIN FILMS BASED ON GRAPHENE OXIDE AND ORGANIC CHROMOPHORES
- Authors: Radygin K.O.1, Zvyagina A.I.2, Aleksandrov A.E.2, Kalinina M.A.2
-
Affiliations:
- Moscow State University
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 833-845
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376461
- DOI: https://doi.org/10.7868/S3034543X25060149
- ID: 376461
Cite item
Abstract
About the authors
K. O. Radygin
Moscow State UniversityMoscow, Russia
A. I. Zvyagina
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow, Russia
A. E. Aleksandrov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow, Russia
M. A. Kalinina
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia
References
- Gomez-Romero P. Hybrid organic-inorganic materials – in search of synergic activity // Adv. Mater. 2001. V. 13. № 3. P. 163–174. https://doi.org/10.1002/1521-4095(200102)13:3163::AID-ADMA1633.0.CO;2-U
- Anbuechzhiyan G., Mubarak N.M., Karri R.R., Khalid M. A synergistic effect on enriching the Mg-Al-Zn alloy-based hybrid composite properties // Sci. Rep. 2022. V. 12. № 1. P. 20053. https://doi.org/10.1038/s41598-022-24427-8
- Luo X., Yang G., Schubert D.W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy // Adv. Compos. Hybrid Mater. 2022. V. 5. № 1. P. 250–262. https://doi.org/10.1007/s42114-021-00332-y
- Li Y., Yang T., Yu T., Zheng L., Liao K. Synergistic effect of hybrid carbon nanotube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites // J. Mater. Chem. 2011. V. 21. № 29. P. 10844–10851. https://doi.org/10.1039/c1jm11359c
- Charitos I., Georgousis G., Klonos P.A., Kyritsis A., Mouzakis D., Raptis Y., Kontos A., Kontou E. The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites // Polym. Test. 2021. V. 95. P. 107102. https://doi.org/10.1016/j.polymertesting.2021.107102
- Lim E. The effects of molecular packing behavior of small-molecule acceptors in ternary organic solar cells // Appl. Sci. 2021. V. 11. № 2. P. 755. https://doi.org/10.3390/app11020755
- Qin B., Yin Z., Tang X., Zhang S., Wu Y., Xu J.-F., Zhang X. Supramolecular polymer chemistry: From structural control to functional assembly // Prog. Polym. Sci. 2020. V. 100. P. 101167. https://doi.org/10.1016/j.progpolymsc.2019.101167
- Bronstein H., Nielsen C.B., Schroeder B.C., McCulloch I. The role of chemical design in the performance of organic semiconductors // Nat. Rev. Chem. 2020. V. 4. № 2. P. 66–77. https://doi.org/10.1038/s41570-019-0152-9
- Nugmanova A.G., Kalinina M.A. Supramolecular self-assembly of hybrid colloidal systems // Colloid J. 2022. V. 84. № 5. P. 642–662. https://doi.org/10.1134/S1061933X22700107
- Gusarova E.A., Zvyagina A.I., Aleksandrov A.E., Averin A.A., Tameev A.R., Kalinina M.A. Combinatorial non-covalent assembly of graphene oxide and chromophores into hybrid nanofilms for organic electronics // New J. Chem. 2023. V. 47. № 6. P. 2847–2857. https://doi.org/10.1039/d2nj05281d
- Hagfeldt A., Boschloo G., Sun L., Klos L., Pettersson H. Dye-sensitized solar cells // Chem. Rev. 2010. V. 110. № 11. P. 6595–6663. https://doi.org/10.1021/cr900356p
- Ghosh A., Bhandari S., Furuta H., Ishida M. Open-chain tetrapyrroles meet metal ions in the functional molecular material science // Chempluschem. 2025. V. 90. No 6. P. e202500090. https://doi.org/10.1002/cplu.202500090
- Лобанов А.В., Мельников М.Я. Фотокаталитическая активность иммобилизованных металлокомплексов тетрапирролов в средах, содержащих пероксид водорода // Химическая безопасность. 2019. Т. 3. No 1. C. 28-34. https://doi.org/10.25514/CHS.2019.1.15001
- Lewandowska-Andralojc A., Gacka E., Pedzinski T., Burdzinski G., Lindner A., O’Brien J.M., Senge M.O., Siklitskaya A., Kubas A., Marciniak B., Walkowiak-Kulikowska J. Understanding structure-properties relationships of porphyrin linked to graphene oxide through π - π - stacking or covalent amide bonds // Sci. Rep. 2022. V. 12. No 1. P. 13420. https://doi.org/10.1038/s41598-022-16931-8
- Limburg B., Thomas J.O., Holloway G., Sadeghi H., Sangtarash S., Hou I.C., Cremers J., Narita A., Müllen K., Lambert C.J., Briggs G.A.D., Mol J.A., Anderson H.L. Anchor groups for graphene-porphyrin single-molecule transistors // Adv. Funct. Mater. 2018. V. 28. No 45. P. 1803629. https://doi.org/10.1002/adfm.201803629
- Hu S., Jia Y. Function of tetra (4-aminophenyl) porphyrin in altering the electronic performances of reduced graphene oxide-based field effect transistor // Molecules. 2019. V. 24. No 21. P. 3960. https://doi.org/10.3390/molecules24213960
- Kawata T., Ono T., Kanai Y., Ohno Y., Maehashi K., Inoue K., Matsumoto K. Improved sensitivity of a graphene FET biosensor using porphyrin linkers // Jpn. J. Appl. Phys. 2018. V. 57. No 6. P. 065103. https://doi.org/10.7567/JJAP.57.065103
- Karousis N., Sandanayaka A.S.D., Hasobe T., Economopoulos S.P., Sarantopoulou E., Tagmatarchis N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties // J. Mater. Chem. 2011. V. 21. No 1. P. 109-117. https://doi.org/10.1039/C0JM00991A
- Ahmed A., Devi G., Kapahi A., Kundan S., Katoch S., Bajju G.D. Covalently linked porphyrin-graphene oxide nanocomposite: synthesis, characterization and catalytic activity // J. Mater. Sci. Mater. Electron. 2019. V. 30. No 22. P. 19738-19751. https://doi.org/10.1007/s10854-019-02324-7
- Monteiro A.R., Neves M.G.P.M.S., Trindade T. Functionalization of graphene oxide with porphyrins: synthetic routes and biological applications // Chempluschem. 2020. V. 85. No 8. P. 1857-1880. https://doi.org/10.1002/cplu.202000455
- Meshkov I.N., Zvyagina A.I., Shiryaev A.A., Nickolsky M.S., Baranchikov A.E., Ezhov A.A., Nugmanova A.G., Enakieva Y.Y., Gorbunova Y.G., Arslanov V.V., Kalinina M.A. Understanding self-assembly of porphyrin-based SURMOFs: How layered minerals can be useful // Langmuir. 2018. V. 34. No 18. P. 5184-5192. https://doi.org/10.1021/acs.langmuir.7b04384
- Mandal H., Chakali M., Venkatesan M., Bangal P.R. Hot electron transfer from CdTe quantum dot (QD) to porphyrin and ultrafast electron transfer from porphyrin to CdTe QD in CdTe QD-tetrakis(4-carboxyphenyl)porphyrin nanocomposites // J. Phys. Chem. C. 2021. V. 125. No 8. P. 4750-4763. https://doi.org/10.1021/acs.jpcc.0c08229
- Saito A., Urai Y., Itoh K. Infrared and resonance raman spectroscopic study on the photopolymerization process of the langmuir-blodgett films of a diacetylene monocarboxylic acid, 10,12-pentacosadiynoic acid // Langmuir. 1996. V. 12. No 16. P. 3938-3944. https://doi.org/10.1021/la951503z
- Reanprayoon C., Gasiorowski J., Sukwattanasinitt M., Sariciftci N.S., Thamyongkit P. Polydiacetylene-nested porphyrin as a potential light harvesting component in bulk heterojunction solar cells // RSC Adv. 2014. V. 4. No 6. P. 3045-3050. https://doi.org/10.1039/c3ra45373a
- Gusarova E.A., Zvyagina A.I., Aleksandrov A.E., Averin A.A., Tameev A.R., Kalinina M.A. Combinatorial non-covalent assembly of graphene oxide and chromophores into hybrid nanofilms for organic electronics // New J. Chem. 2023. V. 47. No 6. P. 2847-2857. https://doi.org/10.1039/D2NJ05281D
- Zvyagina A.I., Shiryaev A.A., Baranchikov A.E., Chernyshev V. V., Enakieva Y.Y., Raitman O.A., Ezhov A.A., Meshkov I.N., Grishanov D.A., Ivanova O.S., Gorbunova Y.G., Arslanov V. V., Kalinina M.A. Layer-by-layer assembly of porphyrin-based metal-organic frameworks on solids decorated with graphene oxide // New J. Chem. 2017. V. 41. No 3. P. 948-957. https://doi.org/10.1039/C6NJ03202H
- Zvyagina A.I., Alexandrov A.E., Averin A.A., Senchikhin I.N., Sokolov M.R., Ezhov A.A., Tameev A.R., Kalinina M.A. One-step interfacial integration of graphene oxide and organic chromophores into multicomponent nanohybrids with photoelectric properties // Langmuir. 2022. V. 38. № 49. P. 15145-15155. https://doi.org/10.1021/acs.langmuir.2c02155
- Zvyagina A.I., Melnikova E.K., Averin A.A., Baranchikov A.E., Tameev A.R., Malov V. V., Ezhov A.A., Grishanov D.A. Gun J., Ermakova E. V., Arslanov V. V., Kalinina M.A. A facile approach to fabricating ultrathin layers of reduced graphene oxide on planar solids // Carbon N. Y. 2018. V. 134. P. 62-70. https://doi.org/10.1016/j.carbon.2018.03.075
- Adler A.D., Longo F.R., Kampas F., Kim J. On the preparation of metalloporphyrins // J. Inorg. Nucl. Chem. 1970. V. 32. № 7. P. 2443-2445. https://doi.org/10.1016/0022-1902(70)80535-8
- Yeboah A., Sowah-Kuma D., Bu W., Paige M.F. Single-molecule fluorescence spectroscopy of phase-separated 10,12-pentacosadynoic acid films // J. Phys. Chem. B. 2021. V. 125. № 15. P. 3953-3962. https://doi.org/10.1021/acs.jpcb.1c00951
- Medintz I., Hildebrandt N. FRET - Förster Resonance Energy Transfer // FRET - Förster Resonance Energy Transfer: From Theory to Applications / ed. Medintz I., Hildebrandt N. 2013. 1-791 p. https://doi.org/10.1002/9783527656028
Supplementary files


