НЕКОВАЛЕНТНАЯ СБОРКА И УПРАВЛЕНИЕ ПЕРЕНОСОМ ЗАРЯДА В УЛЬТРАТОНКИХ ПЛЕНКАХ НА ОСНОВЕ ОКСИДА ГРАФЕНА И ОРГАНИЧЕСКИХ ХРОМОФОРОВ
- Авторы: Радыгин К.О.1, Звягина А.И.2, Александров А.Е.2, Калинина М.А.2
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Выпуск: Том 87, № 6 (2025)
- Страницы: 833-845
- Раздел: Статьи
- Статья получена: 27.01.2026
- Статья опубликована: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376461
- DOI: https://doi.org/10.7868/S3034543X25060149
- ID: 376461
Цитировать
Аннотация
Ключевые слова
Об авторах
К. О. Радыгин
Московский государственный университет им. М.В. ЛомоносоваМосква, Россия
А. И. Звягина
Институт физической химии и электрохимии им. А.Н. Фрумкина РАНМосква, Россия
А. Е. Александров
Институт физической химии и электрохимии им. А.Н. Фрумкина РАНМосква, Россия
М. А. Калинина
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: kalinina@phyche.ac.ru
Москва, Россия
Список литературы
- Gomez-Romero P. Hybrid organic-inorganic materials – in search of synergic activity // Adv. Mater. 2001. V. 13. № 3. P. 163–174. https://doi.org/10.1002/1521-4095(200102)13:3163::AID-ADMA1633.0.CO;2-U
- Anbuechzhiyan G., Mubarak N.M., Karri R.R., Khalid M. A synergistic effect on enriching the Mg-Al-Zn alloy-based hybrid composite properties // Sci. Rep. 2022. V. 12. № 1. P. 20053. https://doi.org/10.1038/s41598-022-24427-8
- Luo X., Yang G., Schubert D.W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy // Adv. Compos. Hybrid Mater. 2022. V. 5. № 1. P. 250–262. https://doi.org/10.1007/s42114-021-00332-y
- Li Y., Yang T., Yu T., Zheng L., Liao K. Synergistic effect of hybrid carbon nanotube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites // J. Mater. Chem. 2011. V. 21. № 29. P. 10844–10851. https://doi.org/10.1039/c1jm11359c
- Charitos I., Georgousis G., Klonos P.A., Kyritsis A., Mouzakis D., Raptis Y., Kontos A., Kontou E. The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites // Polym. Test. 2021. V. 95. P. 107102. https://doi.org/10.1016/j.polymertesting.2021.107102
- Lim E. The effects of molecular packing behavior of small-molecule acceptors in ternary organic solar cells // Appl. Sci. 2021. V. 11. № 2. P. 755. https://doi.org/10.3390/app11020755
- Qin B., Yin Z., Tang X., Zhang S., Wu Y., Xu J.-F., Zhang X. Supramolecular polymer chemistry: From structural control to functional assembly // Prog. Polym. Sci. 2020. V. 100. P. 101167. https://doi.org/10.1016/j.progpolymsc.2019.101167
- Bronstein H., Nielsen C.B., Schroeder B.C., McCulloch I. The role of chemical design in the performance of organic semiconductors // Nat. Rev. Chem. 2020. V. 4. № 2. P. 66–77. https://doi.org/10.1038/s41570-019-0152-9
- Nugmanova A.G., Kalinina M.A. Supramolecular self-assembly of hybrid colloidal systems // Colloid J. 2022. V. 84. № 5. P. 642–662. https://doi.org/10.1134/S1061933X22700107
- Gusarova E.A., Zvyagina A.I., Aleksandrov A.E., Averin A.A., Tameev A.R., Kalinina M.A. Combinatorial non-covalent assembly of graphene oxide and chromophores into hybrid nanofilms for organic electronics // New J. Chem. 2023. V. 47. № 6. P. 2847–2857. https://doi.org/10.1039/d2nj05281d
- Hagfeldt A., Boschloo G., Sun L., Klos L., Pettersson H. Dye-sensitized solar cells // Chem. Rev. 2010. V. 110. № 11. P. 6595–6663. https://doi.org/10.1021/cr900356p
- Ghosh A., Bhandari S., Furuta H., Ishida M. Open-chain tetrapyrroles meet metal ions in the functional molecular material science // Chempluschem. 2025. V. 90. No 6. P. e202500090. https://doi.org/10.1002/cplu.202500090
- Лобанов А.В., Мельников М.Я. Фотокаталитическая активность иммобилизованных металлокомплексов тетрапирролов в средах, содержащих пероксид водорода // Химическая безопасность. 2019. Т. 3. No 1. C. 28-34. https://doi.org/10.25514/CHS.2019.1.15001
- Lewandowska-Andralojc A., Gacka E., Pedzinski T., Burdzinski G., Lindner A., O’Brien J.M., Senge M.O., Siklitskaya A., Kubas A., Marciniak B., Walkowiak-Kulikowska J. Understanding structure-properties relationships of porphyrin linked to graphene oxide through π - π - stacking or covalent amide bonds // Sci. Rep. 2022. V. 12. No 1. P. 13420. https://doi.org/10.1038/s41598-022-16931-8
- Limburg B., Thomas J.O., Holloway G., Sadeghi H., Sangtarash S., Hou I.C., Cremers J., Narita A., Müllen K., Lambert C.J., Briggs G.A.D., Mol J.A., Anderson H.L. Anchor groups for graphene-porphyrin single-molecule transistors // Adv. Funct. Mater. 2018. V. 28. No 45. P. 1803629. https://doi.org/10.1002/adfm.201803629
- Hu S., Jia Y. Function of tetra (4-aminophenyl) porphyrin in altering the electronic performances of reduced graphene oxide-based field effect transistor // Molecules. 2019. V. 24. No 21. P. 3960. https://doi.org/10.3390/molecules24213960
- Kawata T., Ono T., Kanai Y., Ohno Y., Maehashi K., Inoue K., Matsumoto K. Improved sensitivity of a graphene FET biosensor using porphyrin linkers // Jpn. J. Appl. Phys. 2018. V. 57. No 6. P. 065103. https://doi.org/10.7567/JJAP.57.065103
- Karousis N., Sandanayaka A.S.D., Hasobe T., Economopoulos S.P., Sarantopoulou E., Tagmatarchis N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties // J. Mater. Chem. 2011. V. 21. No 1. P. 109-117. https://doi.org/10.1039/C0JM00991A
- Ahmed A., Devi G., Kapahi A., Kundan S., Katoch S., Bajju G.D. Covalently linked porphyrin-graphene oxide nanocomposite: synthesis, characterization and catalytic activity // J. Mater. Sci. Mater. Electron. 2019. V. 30. No 22. P. 19738-19751. https://doi.org/10.1007/s10854-019-02324-7
- Monteiro A.R., Neves M.G.P.M.S., Trindade T. Functionalization of graphene oxide with porphyrins: synthetic routes and biological applications // Chempluschem. 2020. V. 85. No 8. P. 1857-1880. https://doi.org/10.1002/cplu.202000455
- Meshkov I.N., Zvyagina A.I., Shiryaev A.A., Nickolsky M.S., Baranchikov A.E., Ezhov A.A., Nugmanova A.G., Enakieva Y.Y., Gorbunova Y.G., Arslanov V.V., Kalinina M.A. Understanding self-assembly of porphyrin-based SURMOFs: How layered minerals can be useful // Langmuir. 2018. V. 34. No 18. P. 5184-5192. https://doi.org/10.1021/acs.langmuir.7b04384
- Mandal H., Chakali M., Venkatesan M., Bangal P.R. Hot electron transfer from CdTe quantum dot (QD) to porphyrin and ultrafast electron transfer from porphyrin to CdTe QD in CdTe QD-tetrakis(4-carboxyphenyl)porphyrin nanocomposites // J. Phys. Chem. C. 2021. V. 125. No 8. P. 4750-4763. https://doi.org/10.1021/acs.jpcc.0c08229
- Saito A., Urai Y., Itoh K. Infrared and resonance raman spectroscopic study on the photopolymerization process of the langmuir-blodgett films of a diacetylene monocarboxylic acid, 10,12-pentacosadiynoic acid // Langmuir. 1996. V. 12. No 16. P. 3938-3944. https://doi.org/10.1021/la951503z
- Reanprayoon C., Gasiorowski J., Sukwattanasinitt M., Sariciftci N.S., Thamyongkit P. Polydiacetylene-nested porphyrin as a potential light harvesting component in bulk heterojunction solar cells // RSC Adv. 2014. V. 4. No 6. P. 3045-3050. https://doi.org/10.1039/c3ra45373a
- Gusarova E.A., Zvyagina A.I., Aleksandrov A.E., Averin A.A., Tameev A.R., Kalinina M.A. Combinatorial non-covalent assembly of graphene oxide and chromophores into hybrid nanofilms for organic electronics // New J. Chem. 2023. V. 47. No 6. P. 2847-2857. https://doi.org/10.1039/D2NJ05281D
- Zvyagina A.I., Shiryaev A.A., Baranchikov A.E., Chernyshev V. V., Enakieva Y.Y., Raitman O.A., Ezhov A.A., Meshkov I.N., Grishanov D.A., Ivanova O.S., Gorbunova Y.G., Arslanov V. V., Kalinina M.A. Layer-by-layer assembly of porphyrin-based metal-organic frameworks on solids decorated with graphene oxide // New J. Chem. 2017. V. 41. No 3. P. 948-957. https://doi.org/10.1039/C6NJ03202H
- Zvyagina A.I., Alexandrov A.E., Averin A.A., Senchikhin I.N., Sokolov M.R., Ezhov A.A., Tameev A.R., Kalinina M.A. One-step interfacial integration of graphene oxide and organic chromophores into multicomponent nanohybrids with photoelectric properties // Langmuir. 2022. V. 38. № 49. P. 15145-15155. https://doi.org/10.1021/acs.langmuir.2c02155
- Zvyagina A.I., Melnikova E.K., Averin A.A., Baranchikov A.E., Tameev A.R., Malov V. V., Ezhov A.A., Grishanov D.A. Gun J., Ermakova E. V., Arslanov V. V., Kalinina M.A. A facile approach to fabricating ultrathin layers of reduced graphene oxide on planar solids // Carbon N. Y. 2018. V. 134. P. 62-70. https://doi.org/10.1016/j.carbon.2018.03.075
- Adler A.D., Longo F.R., Kampas F., Kim J. On the preparation of metalloporphyrins // J. Inorg. Nucl. Chem. 1970. V. 32. № 7. P. 2443-2445. https://doi.org/10.1016/0022-1902(70)80535-8
- Yeboah A., Sowah-Kuma D., Bu W., Paige M.F. Single-molecule fluorescence spectroscopy of phase-separated 10,12-pentacosadynoic acid films // J. Phys. Chem. B. 2021. V. 125. № 15. P. 3953-3962. https://doi.org/10.1021/acs.jpcb.1c00951
- Medintz I., Hildebrandt N. FRET - Förster Resonance Energy Transfer // FRET - Förster Resonance Energy Transfer: From Theory to Applications / ed. Medintz I., Hildebrandt N. 2013. 1-791 p. https://doi.org/10.1002/9783527656028
Дополнительные файлы


