POLYMERIC MICELLES FOR NANOMEDICINE: HOW TO ENHANCE THEIR STABILITY?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Polymeric micelles remain actively studied objects in the nanomedicine, including the anticancer pharmacotherapy, for several decades. Due to their "core-corona" structure, adjustable parameters (i.e. size, shape, sorption capacity, degradation rate, etc.), the ability to impart stimuli-sensitive properties, etc., polymeric micelles have proven themselves as promising carriers that are capable of effective encapsulation of various drug substances, their delivery to target tissues and organs, while ensuring their controlled and prolonged release. Despite numerous studies, only four nanopreparations of anticancer agents based on polymeric micelles have been approved in different parts of the world to date. The presented review discusses one of the significant disadvantages of polymeric micelles as drug carriers, namely the chance of their disintegration into unassociated macromolecules upon dilution and/or environmental conditions changes (pH, temperature, ionic strength of the solution), and considers some strategies used to eliminate this disadvantage due to insufficient thermodynamic stability. The strategies include chemical cross-linking of polymeric chains that form the core or corona of micelles, physical cross-linking of micelle segments due to additional hydrophobic, electrostatic interactions or stereocomplexation, and the formation of monomolecular micelles.

About the authors

E. V Kuznetsova

National Research Center "Kurchatov Institute"; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: kuznetsova.kate992@gmail.com
Moscow, Russia

S. N Chvalun

National Research Center "Kurchatov Institute"; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Moscow, Russia

References

  1. Riehemann K., Schneider S.W., Luger T.A. et al. Nanomedicine – Challenge and perspectives // Angewandte Chemie International Edition. 2025. V. 48. № 5. P. 872–897. https://doi.org/10.1002/anie.200802585
  2. Кузнецова Е.В., Кузнецов Н.М. Коллоидные объекты в биомедицине: Современные тенденции и перспективы // Коллоидный журнал. 2023. Т. 85. № 5. С. 551–555. https://doi.org/10.31857/S0023291223600748
  3. Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities // Nature Reviews Cancer. 2017. V. 17. P. 20–37. https://doi.org/10.1038/nrc.2016.108
  4. Sedush N.G., Kadina Y.A, Razuvaeva E.V., et al. Nanoformulations of drugs based on biodegradable lactide copolymers with various molecular structures and architectures // Nanotechnology in Russia. 2021. V. 16. P. 421–438 https://doi.org/10.1134/S2635167621040121
  5. Hu X., Cheng J., Yuan R., et al. Gold nanoparticles: diagnostic and therapeutic applications in neurodegenerative disorders // Journal of Drug Targeting. 2025. P. 1–18. https://doi.org/10.1080/1061186X.2025.2509287
  6. Li B., Yakufu M., Xie R., et al. Functional gold nanoparticles in diagnosis and treatment of cancer: A systematic review // APL Materials. 2025. V. 13. № 5. P. 050602. https://doi.org/10.1063/5.0273264
  7. Dykman L., Khlebtsov B., Khlebtsov N. Drug delivery using gold nanoparticles // Advanced Drug Delivery Reviews. 2025. V. 216. P. 115481. https://doi.org/10.1016/j.addr.2024.115481
  8. Ефимова А.А., Сыбачин А.В. Стимул-чувствительные системы для доставки лекарств на основе бислойных липидных везикул: новые тенденции // Коллоидный журнал. 2023. Т. 85. № 5. С. 566–582. https://doi.org/10.31857/S0023291223600608
  9. Sun W., He W. Application of liposome-based drug delivery systems in tumor treatment // Journal of Cluster Science. 2025. V. 36. P. 118. https://doi.org/10.1007/s10876-025-02836-9
  10. Cheng Z., Huang H., Yin M., Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects // Experimental Hematology & Oncology. 2025. V. 14. P. 11. https://doi.org/10.1186/s40164-025-00602-1
  11. Efimova A.A., Abramova T.A., Yatsenko I.V., et al. pH-Sensitive multiliposomal containers for encapsulation and rapid release of bioactive substances // Molecules. 2025. V. 30. №12. P. 2608. https://doi.org/10.3390/molecules30122608
  12. Efimova A.A., Sybachin A.V., Chvalun S.N., et al. Biodegradable multi-liposomal containers // Polymer Science Series B. 2015. V. 57. P. 140–144. https://doi.org/10.1134/S1560090415020050
  13. Мищенко Е.В., Гилёва А.М., Марквичева Е.А., Королева М.Ю. Наноэмульсии и твердые липидные наночастицы с инкапсулированным доксорубицином и тимохиноном // Коллоидный журнал. 2023. Т. 85. № 5. С. 619–628. https://doi.org/10.31857/S002329122360058X
  14. Gupta A., Jadhav S.R., Colaco V., et al. Harnessing unique architecture and emerging strategies of solid lipid nanoparticles to combat colon cancer: A state-of-the-art review // International Journal of Pharmaceutics. 2025. V. 675. P. 125562. https://doi.org/10.1016/j.ijpharm.2025.125562
  15. Широких А.Д., Гурулева Ю.А., Маринец Е.А., Королева М.Ю. Липидные наночастицы для инкапсулирования и доставки лютеина // Коллоидный журнал. 2023. Т. 85. № 5. С. 705–714. https://doi.org/10.31857/S0023291223600530
  16. Меркулова М.А., Осипова Н.С., Калистратова А.В., Ермоленко Ю.В., Гельперина С.Э. Коллоидные системы доставки этопозида на основе биодеградируемых полимерных носителей (Обзор литературы) // Коллоидный журнал. 2023. Т. 85. № 5. С. 593–618. https://doi.org/10.31857/S0023291223600463
  17. Kuznetsova E.V., Sedush N.G., Puchkova Y.A., et al. Highly stable docetaxel-loaded nanoparticles based on poly(D,L-lactide)-b-poly(ethylene glycol) for cancer treatment: Preparation, characterization, and in vitro cytotoxicity studies // Polymers. 2023. V. 15. № 10. P. 2296. https://doi.org/10.3390/polym15102296
  18. Puchkova Y., Sedush N., Kuznetsova E., Chvalun S. Self-assembly behavior and cytotoxicity of PEG-b-PLA nanoparticles for improved oxaliplatin delivery: Effect of PLA block length// Reviews and Advances in Chemistry. 2023. V. 13. P. 152–159. https://doi.org/10.1134/S2634827623600056
  19. Dixit T., Vaidya A., Ravindran S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management // Future Science OA. 2025. V. 11. № 1. P. 2467591. https://doi.org/10.1080/20565623.2025.2467591
  20. Othman R.S., Zarei S., Haghighat H.R., et al. Recent advances in smart polymeric micelles for targeted drug delivery // Polymers for Advanced Technologies. 2025. V. 36. № 4. P. e70180. https://doi.org/10.1002/pat.70180
  21. Kuznetsova E.V., Vantsyan M.A., Kalinin K.T., et al. Poly(D,L-lactide-co-glycolide) nanoparticles modified by layer-by-layer adsorption of polyethyleneimine and dextran sulfate for cyanocobalamin embedding // BioNanoScience. 2025. V. 15. P. 174. https://doi.org/10.1007/s12668-024-01792-4
  22. Pallares R.M., Barmin R.A., Wang A., et al. Clinical cancer nanomedicines // Journal of Controlled Release. 2025. V. 385. P. 113991. https://doi.org/10.1016/j.jconrel.2025.113991
  23. van der Meel R., Sulheim E., Shi Y., et al. Smart cancer nanomedicine // Nature Nanotechnology. 2019. V. 14. P. 1007–1017. https://doi.org/10.1038/s41565-019-0567-y
  24. Gerken L.R.H., Gerdes M.E., Pruschy M., Hermann I.K. Prospects of nanoparticle-based radioenhancement for radiotherapy // Materials Horizons. 2023. V. 10. № 10. P. 4059–4082. https://doi.org/10.1039/D3MH00265A
  25. Konno T., Maeda H., Iwai K., et al. Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium // Cancer. 1984. V. 54. № 11. P. 2367–2374. https://doi.org/10.1002/1097-0142(19841201)54:11<2367::aid-cncr2820541111>3.0.co;2-f
  26. Vagena I.-A., Malapani C., Gatou M.-A., et al. Enhancement of EPR effect for passive tumor targeting: Current status and future perspectives // Applied Sciences. 2025. V. 15. № 6. P. 3189. https://doi.org/10.3390/app15063189
  27. Beach M.A., Nayanathara U., Gao Y., et al. Polymeric nanoparticles for drug delivery // Chemical Reviews. 2024. V. 124. № 9. P. 5505–5616. https://doi.org/10.1021/acs.chemrev.3c00705
  28. Öztürk K., Kaplan M., Çalış M. Effects of nanoparticle size, shape, and zeta potential on drug delivery // International Journal of Pharmaceutics. 2024. V. 666. P. 124799. https://doi.org/10.1016/j.ijpharm.2024.124799
  29. Dasgupta A., Sofias A.M., Kiessling F., Lammers T. Nanoparticle delivery to tumours: from EPR and ATR mechanisms to clinical impact // Nature Reviews Bioengineering. 2024. V. 4. P. 714–716. https://doi.org/10.1038/s44222-024-00203-3
  30. Zheng Y., Oz Y., Gu Y., et al. Rational design of polymeric micelles for targeted therapeutic selivery // Nanotoday. 2024. V. 55. P. 102147. https://doi.org/10.1016/j.nantod.2024.102147
  31. Othman R.S., Zarei S., Haghighat H.S., et al. Recent advances in smart polymeric micelles for targeted drug delivery // Polymers for Advanced Technologies. 2025. V. 36. № 4. P. e70180. https://doi.org/10.1002/pat.70180
  32. Yang C., Ma H., Liang Z., et al. Cyclic RGD modified dextran-quercetin polymer micelles for targeted therapy of breast cancer // International Journal of Biological Macromolecules. 2025. V. 308. P. 142272. https://doi.org/10.1016/j.ijbiomac.2025.142272
  33. Cabral H., Miyata K., Osada K., Kataoka K. Block copolymer micelles in nanomedicine applications // Chemical Reviews. 2018. V. 118. № 14. P. 6844−6892. https://doi.org/10.1021/acs.chemrev.8b00199
  34. Zhang C., Yan L., Wang X., et al. Progress, challenges, and future of nanomedicine // Nanotoday. 2020. V. 35. P. 101008. https://doi.org/10.1016/j.nantod.2020.101008
  35. Hwang D., Ramsey J.D., Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval // Advanced Drug Delivery Reviews. 2020. V. 156. P. 80–118. https://doi.org/10.1016/j.addr.2020.09.009
  36. Fan X., Chang J.Y., Lim Y.X., et al. Review of adaptive programmable materials and their bioapplications // ACS Applied Materials & Interfaces. 2016. V. 8. № 49. P. 333351–33370. https://doi.org/10.1021/acsami.6b09110
  37. Xiang Y., Oo N.N.L., Lee J.P., et al. Recent development of synthetic nonviral systems for sustained gene delivery // Drug Discovery Today. 2017. V. 22. № 9. P. 1318–1335. https://doi.org/10.1016/j.drudis.2017.04.001
  38. New Jain A., Bhardwaj K., Bansal M. Polymeric micelles as drug delivery system: Recent advances, approaches, applications and patents // Current Drug Safety. 2024. V. 19. № 2. P. 163–171. https://doi.org/10.2174/1574886318666230605120433
  39. Ahmad I., Kushwaha P., Usmani S., Tiwari A. Polymeric micelles: Revolutionizing cancer therapeutics for enhanced efficacy // Bionanoscience. 2025. V. 15. P. 186. https://doi.org/10.1007/s12668-025-01803-y
  40. Zhang Y., Ren T., Gou J. Strategies for improving the payload of small molecular drugs in polymeric micelles // Journal of Controlled Release. 2017. V. 261. P. 352–366. https://doi.org/10.1016/j.jconrel.2017.01.047
  41. Jin Z., Al Amili M., Guo S. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects // Biomedicines. 2024. V. 12. № 2. P. 417. https://doi.org/10.3390/biomedicines12020417
  42. Li S., Li T., Wang X. Research progress of treating ulcerative colitis and colon cancer by using oral colon targeted drug delivery system based on polymer micelles // Journal of Drug Targeting. 2025. P. 1–26. https://doi.org/10.1080/1061186X.2025.2514564
  43. Sil D., Kumar D., Das Kurmi D., Kumar M. Recent progress in polymeric micelle – Enabled targeted nanotherapeutics for diabetic retinopathy // Journal of Drug Delivery Science and Technology. 2025. V. 104. P. 106448. https://doi.org/10.1016/j.jddst.2024.106448
  44. Junnuthula V., Kolimi P., Nyavanandi D., et al. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations // Pharmaceutics. 2022. V. 14. № 9. P. 1860. https://doi.org/10.3390/pharmaceutics14091860
  45. Ghezzi M., Pescina S., Padula C., et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions // Journal of Controlled Release. 2021. V. 332. P. 312–336 https://doi.org/10.1016/j.jconrel.2021.02.031
  46. Lin M., Dai Y., Xia F., Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications // Materials Science and Engineering: C. 2021. V. 119. P. 111626 https://doi.org/10.1016/j.msec.2020.111626
  47. Zhang X., Zhuo J., Wang D., Zhu X. Supramolecular polymers for drug delivery // Chemistry – A European Journal. 2025. V. 31. № 17. P. e202404617. https://doi.org/10.1002/chem.202404617
  48. Yao X., Cao X., He J., et al. Controlled fabrication of unimolecular micelles as versatile nanoplatform for multifunctional applications // Small. 2024. V. 20. № 48. P. 2405816. https://doi.org/10.1002/smll.202405816
  49. O’Reilly R.K., Hawker C.J., Wooley K.L. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility // Chemical Society Reviews. 2006. V. 35. № 11. P. 1068–1083. https://doi.org/10.1039/B514858H
  50. Bauer T.A., Alberg I., Zengerling L.A., et al. Tuning the cross-linking density and cross-linker in core cross-linked polymeric micelles and its effects on the particle stability in human blood plasma and mice // Biomacromolecules. 2023. V. 24. № 8. P. 3545–3556. https://doi.org/10.1021/acs.biomac.3c00308
  51. Nishiyama N., Kato Y., Sugiyama Y., Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery dystem // Pharmaceutical Research. 2001. V. 18. № 7. P. 1035–1041. https://doi.org/10.1023/a:1010908916184
  52. Bauer T.A., Eckrich J., Wiesmann N., et al. Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(II) complexes // Journal of Material Chemistry B. 2021. V. 9. № 9. P. 8211−8223. https://doi.org/10.1039/D1TB01336J
  53. Talelli M., Barz M., Rijcken C.J., et al. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation // Nano Today. 2015. V. 10. № 1. P. 93−117. https://doi.org/10.1016/j.nantod.2015.01.005
  54. Hu Q., Rijcken C.J., Bansal R., et al. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles // Biomaterials. 2015. V. 53. P. 370−378. https://doi.org/10.1016/j.biomaterials.2015.02.085
  55. Prochάzka K., Baloch M.K., Tuzar Z. Photochemical stabilization of block copolymer micelles // Die Makromolekulare Chemie. 1979. V. 180. № 10. P. 2521–2523. https://doi.org/10.1002/macp.1979.021801029
  56. Thurmond K.B., Kowalewski T., Wolley K.L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles // Journal of the American Chemical Society. 1996. V. 118. № 30. P. 7239–7240. https://doi.org/10.1021/ja961299h
  57. Huang H., Kowalewski T., Remsen E.E., et al. Hydrogel-coated glassy nanospheres: A novel method for the synthesis of shell cross-linked knedels // Journal of the American Chemical Society. 1997. V. 119. № 48. P. 11653–11659. https://doi.org/10.1021/ja9717469
  58. Shuai X., Merdan T., Schaper A.K., et al. Core-cross-linked polymeric micelles as paclitaxel carriers // Bioconjugate Chemistry. 2004. V. 15. № 3. P. 441–448. https://doi.org/10.1021/bc034113u
  59. Matsumoto K., Hirabayashi T., Harada T., Matsuoka H. Synthesis of shell cross-linked block copolymer micelles with poly(p-styrenesulfonic acid) in the micelle core // Macromolecules. 2005. V. 38. № 24. P. 9957–9962. https://doi.org/10.1021/ma0511651
  60. Yang R., Meng F., Ma S., et al. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel // Biomacromolecules. 2011. V. 12. № 8. P. 3047–3055. https://doi.org/10.1021/bm2006856
  61. Yan L., Yang L., He H., et al. Photo-cross-linked mPEG-poly(γ-cinnamyl-L-glutamate) micelles as stable drug carriers // Polymer Chemistry. 2012. V. 3. № 5. P. 1300–1307. https://doi.org/10.1039/C2PY20049J
  62. Piogé S., Nesterenko A., Brotons G., et al. Core cross-linking of dynamic diblock copolymer micelles: Quantitative study of photopolymerization efficiency and ,icelle structure // Macromolecules. 2011. V. 44. № 3. P. 594–603. https://doi.org/10.1021/ma102284y
  63. Yilmaz Z.E., Vanslambrouk S., Cajot S., et al. Core cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers // RSC Advances. 2016. V. 6. № 48. P. 42081–42088. https://doi.org/10.1039/C6RA07422G
  64. Stouten J., Sijstermans N., Babilotte J., et al. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups // Polymer Chemistry. 2022. V. 13. № 33. P. 4832–4847. https://doi.org/10.1039/D2PY00631F
  65. Li J., Guo S., Wang M., et al. Poly(lactic acid)/poly(ethylene glycol) block copolymer based shell or core cross-linked micelles for controlled release of hydrophobic drug // RSC Advances. 2015. V. 5. № 25. P. 19484–19492. https://doi.org/10.1039/C4RA14376K
  66. Murthy K.S., Ma Q., Clark C.G., et al. Fundamental design aspects of amphiphilic shell-crosslinked nanoparticles for controlled release applications // Chemical Communications. 2001. № 8. P. 773–774. https://doi.org/10.1039/b100819f
  67. Zhou Q., Zhang L., Yang T.H., Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy // International Journal of Nanomedicine. 2018. V. 13. P. 2921–2942. https://doi.org/10.2147/IJN.S158696
  68. Wei H., Cheng C., Chang C., et al. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate) // Langmuir. 2008. V. 24. № 9. P. 4564–4570. https://doi.org/10.1021/la703320h
  69. Sάnchez-Bustos E., Cornejo-Bravo J.M., Licea-Claverie A. Core cross-linked star polymers for temperature/pH controlled delivery of 5-fluorouracil // Journal of Chemistry. 2016. V. 2016. P. 4543191. https://doi.org/10.1155/2016/4543191
  70. Bai J., Wang J., Feng Y., et al. Stability-tunable core-crosslinked polymeric micelles based on an imidazole-bearing block polymer for pH-responsive drug delivery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 639. P. 128353. https://doi.org/10.1016/j.colsurfa.2022.128353
  71. Chen J., Ouyang J., Kong J., et al. Photo-cross-linked and pH-sensitive biodegradable micelles for doxorubicin delivery // ACS Applied Materials & Interfaces. 2013. V. 5. № 8. P. 3108–3117. https://doi.org/10.1021/am400017q
  72. Bayram N.N., Ulu G.T., Topuzoğullari M., et al. HER2-targeted, degradable core cross-linked micelles for specific and dual pH-Sensitive DOX release // Macromolecular Bioscience. 2022. V. 22. № 1. P. 2100375. https://doi.org/10.1002/mabi.202100375
  73. Gulfam M., Matini T., Monteiro P.F., et al. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells // Biomaterials Science. 2017. V. 5. № 3. P. 532–550. https://doi.org/10.1039/C6BM00888G
  74. Kumar P., Kim S.-H., Yadav S., et al. Redox-responsive core-cross-linked micelles of miktoarm poly(ethylene oxide)-b-poly(furfuryl methacrylate) for anticancer drug delivery // ACS Applied Materials & Interfaces. 2023. V. 15. № 10. P. 12719–12734. https://doi.org/10.1021/acsami.2c21152
  75. Yadav S., Ramesh K., Reddy O.S., et al. Redox-responsive comparison of diselenide and disulfide core-cross-linked micelles for drug delivery application // Pharmaceutics. 2023. V. 15. № 4. P 1159. https://doi.org/10.3390/pharmaceutics15041159
  76. Biswas D., An S.Y., Li Y., et al. Intracellular delivery of colloidally stable core-cross-linked triblock copolymer micelles with glutathione-responsive enhanced drug release for cancer therapy // Molecular Pharmaceutics. 2017. V. 14. № 8. P. 2518–2528. https://doi.org/10.1021/acs.molpharmaceut.6b01146
  77. Feng Y., Bai J., Du X., Zhao X. Shell-cross-linking of polymeric micelles by Zn coordination for photo- and pH dual-sensitive drug delivery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. V. 666. P. 131369. https://doi.org/10.1016/j.colsurfa.2023.131369
  78. Gardey E., Sobotta F.H., Hoeppener S., et al. Influence of core cross-linking and shell composition of polymeric micelles on immune response and their interaction with human monocytes // Biomacromolecules. 2020. V. 21. № 4. P. 1393–1406. https://doi.org/10.1021/acs.biomac.9b01656
  79. Chen S., Cheng S.-X., Zhuo R.-X. Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery // Macromolecular Bioscience. 2010. V. 11. № 5. P. 576–589. https://doi.org/10.1002/mabi.201000427
  80. Jimaja S., Varlas S., Foster J.C., et al. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(arylisocyanide)s // Polymer Chemistry. 2022. V. 13. № 27. P. 4047–4053. https://doi.org/10.1039/d2py00397j
  81. Anirudhan T.S., Varghese S., Manjusha V. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of paclitaxel and curcumin // International Journal of Biological Macromolecules. 2021. V. 192. P. 950–957. https://doi.org/10.1016/j.ijbiomac.2021.10.061
  82. Guan S., Zhang Q., Bao J., et al. Phosphatidylserine targeting peptide-functionalized pH sensitive mixed micelles for enhanced anti-tumor drug delivery // European Journal of Pharmaceutics and Biopharmaceutics. 2020. V. 147. P. 87–101. https://doi.org/10.1016/j.ejpb.2019.12.012
  83. Patel H.S., Shaikh S.J., Ray D., et al. Formulation, solubilization, and in vitro characterization of quercetin‑incorporated mixed micelles of PEO‑PPO‑PEO block copolymers // Applied Biochemistry and Biotechnology. 2022. V. 194. P. 445–463. https://doi.org/10.1007/s12010-021-03691-w
  84. Stepanova D.A., Pigareva V.A., Berkovich A.K., et al. Ultrasonic film rehydration synthesis of mixed polylactide micelles for enzyme-resistant drug delivery nanovehicles // Polymers. 2022. V. 14. № 19. P. 4013. https://doi.org/10.3390/polym14194013
  85. Gerardos A.M., Balafouti A., Pispas S. Mixed hyperbranched/triblock copolymer micelle assemblies: Physicochemical properties and potential for drug encapsulation // Macromolecular Chemistry and Physics. 2023. V. 224. № 17. P. 2300109. https://doi.org/10.1002/macp.202300109
  86. Alexandridis P., Holzwarth J.F., Hatton T.A. Micellization of poly (ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association // Macromolecules. 1994. V. 27. № 9. P. 2414–2425. https://doi.org/10.1021/ma00087a009
  87. Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments // Macromolecules. 1995. V. 28. № 15. P. 5294–5299. https://doi.org/10.1021/ma00119a019
  88. Zheng P., Liu Y., Chen J., et al. Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery // Chinese Chemical Letters. 2020. V. 31. № 5. P. 1178–1182. https://doi.org/10.1016/j.cclet.2019.12.001
  89. Luo Y.-L., Yuan J.-F., Shi J.-H., Gao Q.-Y. Synthesis and characterization of polyion complex micelles and their controlled release of folic acid // Journal of Colloid and Interface Science. 2010. V. 350. № 1. P. 140–147. https://doi.org/10.1016/j.jcis.2010.06.014
  90. Dufresne M.-H., Elsabahy M., Leroux J.-C. Characterization of polyion complex micelles designed to address the challenges of oligonucleotide delivery // Pharmaceutical Research. 2008. V. 25. P. 2083–2093. https://doi.org/10.1007/s11095-008-9591-6
  91. Zhao J., Liu T., Li Y., et al. Hepatocellular carcinoma epi-immunotherapy with polyion complex micelles co-delivering HDAC8 inhibitor and PD-L1 siRNA // Chemical Engineering Journal. 2025. V. 503. P. 158138. https://doi.org/10.1016/j.cej.2024.158138
  92. Schwiertz D., Angelina J., Zhang H., Barz M. Miktoarm star-polypept(o)ide-based polyion complex micelles for the delivery of large nucleic acids // Biomacromolecules. 2024. V. 25. № 10. P. 6539–6554. https://doi.org/10.1021/acs.biomac.4c00695
  93. Chen P., Yang W., Hong T,. et al. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC // Biomaterials. 2022. V. 288. P. 121748. https://doi.org/10.1016/j.biomaterials.2022.121748
  94. Nakai K., Nishiuchi M., Inoue M., et al. Preparation and characterization of polyion complex micelles with phosphobetaine shells // Langmuir. 2013. V. 29. № 31. P. 9651–9661. https://doi.org/10.1021/la401063b
  95. Pham T.T., Takahashi R., Pham T.D., Yusa S. Stable water-soluble polyion complex micelles composed of oppositely charged diblock copolymers and reinforced by hydrophobic interactions // Chemistry Letters. 2022. V. 51. № 8. P. 877–880. https://doi.org/10.1246/cl.220241
  96. Pham T.T., Pham T.D., Yusa S. Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions // Polymer Journal. 2022. V. 54. № 9. P. 1091–1101. https://doi.org/10.1038/s41428-022-00659-3
  97. Aydinlioglu E., Abdelghani M., Le Fer G., et al. Robust polyion complex vesicles (PICsomes) based on PEO-b-poly(amino acid) copolymers combining electrostatic and hydrophobic interactions: Formation, siRNA loading and intracellular delivery // Macromolecular Chemistry and Physics. 2022. V. 224. № 1. P. 2200306. https://doi.org/10.1002/macp.202200306
  98. Saklani R., Domb A.J. Peptide and protein stereocomplexes // ACS Omega. 2024. V. 9. № 16. P. 17726–17740. https://doi.org/10.1021/acsomega.4c00178
  99. Ikada Y., Jamshidi K., Tsuji H., Hyon, S.-H. Stereocomplex formation between enantiomeric poly(lactides) // Macromolecules. 1987. V. 20. № 4. P. 904–906. https://doi.org/10.1021/ma00170a034
  100. De Santis P., Kovacs A.J. Molecular conformation of poly(S-laictide) // Biopolymers. 1968. V. 6. № 3. P. 209–306. https://doi.org/10.1002/bip.1968.360060305
  101. Okihara T., Tsuji M., Kawaguchi A., et al. Crystal structure of sterocomplex of poly(l-alanine-lactide) and poly(d-lactide) // Journal of Macromolecular Science, Part B. 1991. V. 30. № 1–2. P. 119–140. https://doi.org/10.1080/00222349108245788
  102. Qiu Y., Wei X., Lam J.W.Y., et al. Chiral nanostructures from artificial helical polymers: Recent advances in synthesis, regulation, and functions // ACS Nano. 2025. V. 19. № 1. P. 229–280. https://doi.org/10.1021/acsnano.4c14797
  103. Piao L., Li Y., Zhang H., Jiang J. Stereocomplex micelle loaded with paclitaxel for enhanced therapy of breast cancer in an orthotopic mouse model // Journal of Biomaterials Science, Polymer Edition. 2019. V. 30. № 3. P. 233–246. https://doi.org/10.1080/09205063.2019.1565612
  104. Li W., Fan X., Wang X., et al. Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery // Materials Science and Engineering: C. 2018. V. 91. P. 688–695. https://doi.org/10.1016/j.msec.2018.06.006
  105. Kost B., Brzeziński M., Cieślak M., et al. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers // European Polymer Journal. 2019. V. 120. P. 109271. https://doi.org/10.1016/j.eurpolymj.2019.109271
  106. Niu H., Li J., Cai Q., et al. Molecular stereocomplexation for enhancing the stability of nanoparticles encapsulated in polymeric micelles for magnetic resonance imaging // Langmuir. 2020. V. 36. № 46. P. 13881−13889. https://doi.org/10.1021/acs.langmuir.0c02281
  107. Liu Y., Xu C., Fan X., et al. Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery // Materials Science and Engineering: C. 202. V. 108. P. 110464. https://doi.org/10.1016/j.msec.2019.110464
  108. Desyatskova A.M., Kuznetsova E.V., Puchkova Y.A., et al. Effect of stereocomplex formation between enantiomeric poly(l,l-lactide) and poly(d,d-lactide) blocks on self-organization of amphiphilic poly(lactide)-block-poly(ethylene oxide) copolymers in dilute aqueous solution // Mendeleev Communications. 2023. V. 33. № 1. P. 86–89. https://doi.org/10.1016/j.mencom.2023.01.027
  109. Brizzolara D., Cantow H.-J., Diederichs K., et al. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s // Macromolecules. 1996. V. 29. № 1. P. 191–197. https://doi.org/10.1021/ma951144e
  110. Hu C., Zhang Y., Pang X., Chen X. Poly(lactic acid): Recent stereochemical advances and new materials engineering // Advanced Materials. 2024. V. 37. № 22. P. 2412185. https://doi.org/10.1002/adma.202412185
  111. Rijpkema S.J., Toebes B.J., van Vlaenderen L., et al. Influence of tacticity on the self-assembly of poly(ethylene glycol)-b-poly(lactic acid) block copolymers// ACS Macro Letters. 2025. V. 14. № 1. P. 101–106. https://doi.org/10.1021/acsmacrolett.4c00758
  112. Shapira-Furman T., Domb A.J. Insulin extended release from PLA-PEG stereocomplex nanoparticles // Macromolecular Bioscience. 2023. V. 24. № 5. P. 2300497. https://doi.org/10.1002/mabi.202300497
  113. Ohya Y., Yoshida Y., Kumagae T., Kuzuya A. Gelation upon the mixing of amphiphilic graft and triblock copolymers containing enantiomeric polylactide segments through stereocomplex formation // Gels. 2024. V. 10. № 2. P. 139. https://doi.org/10.3390/gels10020139
  114. Фомина Ю.С., Семкина А.С., Загоскин Ю.Д., Алексанян М.М., Чвалун С.Н., Григорьев Т.Е. Биосовместимые гидрогели на основе биоразлагаемых полиэфиров и их сополимеров // Коллоидный журнал. 2023. Т. 85. № 5. С. 682–704. https://doi.org/10.31857/S0023291223600554
  115. Fan X., Li Z., Loh X.J. Recent development of unimolecular micelles as functional materials and applications // Polymer Chemistry. 2016. V. 7. № 38. P. 5898–5919. https://doi.org/10.1039/C6PY01006G
  116. Yang D.-P., Oo M.N.N.L., Deen G.R., et al. Nano-star-shaped polymers for drug delivery applications // Molecular Rapid Communications. 2017. V. 38. № 21. P. 1700410. https://doi.org/10.1002/marc.201700410
  117. Liu W., Li J., Qin Z., et al. Zwitterionic unimolecular micelles with pH and temperature response: Enhanced in vivo circulation stability and tumor therapeutic efficiency // Langmuir. 2020. V. 36. № 13. P. 3356–3366. https://doi.org/10.1021/acs.langmuir.0c00206
  118. Liu F., Wang D., Zhang M., et al. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery // Acta Biomaterialia. 2022. V. 144. P. 15–31. https://doi.org/10.1016/j.actbio.2022.03.028
  119. Liu F., Wang J., Qin Y., et al. One-pot synthesis of enzyme and GSH dual-responsive zwitterionic copolymers with cross-linked shells for enhanced anticancer drug delivery // ACS Applied Polymer Materials. 2025. V. 7. № 3. P. 2061–2072. https://doi.org/10.1021/acsapm.4c03864
  120. Tondock F., Nash D., Hudziak C., et al. Design and synthesis of amphiphilic statistical copolymers forming unimeric micelles with thermoresponsive behaviour in the physiological range // Polymer Chemistry. 2025. V. 16. № 19. P. 2216–2231. https://doi.org/10.1039/D4PY01450B
  121. Pathan S., Jayakannan M. Tweaking unimolecular micellar nanoarchitecture for drug delivery in tumor xenograft mice models // Small. 2025. V. 21. № 31. P. 2503155. https://doi.org/10.1002/smll.202503155
  122. Gomzyak V.I., Sedush N.G., Puchkov A.A., et al. Linear and branched lactide polymers for targeted drug delivery systems // Polymer Science, Series B. 2021. V. 63. № 3. P. 257–271. https://doi.org/10.1134/S1560090421030064
  123. Puchkov A.A., Sedush N.G., Buzin A.I., et al. Synthesis and characterization of well-defined star-shaped poly(L-lactides) // Polymer. 2023. V. 264. P. 125573. https://doi.org/10.1016/j.polymer.2022.125573
  124. Fox M.E., Szoka F.C., Frechet J.M.J. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture // Accounts of Chemical Research. 2009. V. 42. № 8. P. 1141–1151. https://doi.org/10.1021/ar900035f
  125. Gillies E.R., Frechet J.M.J. Designing macromolecules for therapeutic applications: Polyester dendrimer – poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture // Journal of the American Chemical Society. 2002. V. 124. № 47. P. 14137–14146. https://doi.org/10.1021/ja028100n
  126. Gillies E.R., Dy E., Frechet J.M.J., Szoka F.C. Biological evaluation of polyester dendrimer: Poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture // Molecular Pharmaceutics. 2005. V. 2. № 2. P. 129–138. https://doi.org/10.1021/mp049886u
  127. Phan Q.T., Rabanel J.-M., Mekhjian D., et al. Core–shell bottlebrush polymers: Unmatched delivery of small active compounds deep into tissues // Small. 2024. V. 21. № 5. P. 2408616. https://doi.org/10.1002/smll.202408616

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).