POLYMERIC MICELLES FOR NANOMEDICINE: HOW TO ENHANCE THEIR STABILITY?
- Authors: Kuznetsova E.V1,2, Chvalun S.N1,2
-
Affiliations:
- National Research Center "Kurchatov Institute"
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 779–802
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376458
- DOI: https://doi.org/10.7868/S3034543X25060114
- ID: 376458
Cite item
Abstract
Polymeric micelles remain actively studied objects in the nanomedicine, including the anticancer pharmacotherapy, for several decades. Due to their "core-corona" structure, adjustable parameters (i.e. size, shape, sorption capacity, degradation rate, etc.), the ability to impart stimuli-sensitive properties, etc., polymeric micelles have proven themselves as promising carriers that are capable of effective encapsulation of various drug substances, their delivery to target tissues and organs, while ensuring their controlled and prolonged release. Despite numerous studies, only four nanopreparations of anticancer agents based on polymeric micelles have been approved in different parts of the world to date. The presented review discusses one of the significant disadvantages of polymeric micelles as drug carriers, namely the chance of their disintegration into unassociated macromolecules upon dilution and/or environmental conditions changes (pH, temperature, ionic strength of the solution), and considers some strategies used to eliminate this disadvantage due to insufficient thermodynamic stability. The strategies include chemical cross-linking of polymeric chains that form the core or corona of micelles, physical cross-linking of micelle segments due to additional hydrophobic, electrostatic interactions or stereocomplexation, and the formation of monomolecular micelles.
About the authors
E. V Kuznetsova
National Research Center "Kurchatov Institute"; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
Email: kuznetsova.kate992@gmail.com
Moscow, Russia
S. N Chvalun
National Research Center "Kurchatov Institute"; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of SciencesMoscow, Russia
References
- Riehemann K., Schneider S.W., Luger T.A. et al. Nanomedicine – Challenge and perspectives // Angewandte Chemie International Edition. 2025. V. 48. № 5. P. 872–897. https://doi.org/10.1002/anie.200802585
- Кузнецова Е.В., Кузнецов Н.М. Коллоидные объекты в биомедицине: Современные тенденции и перспективы // Коллоидный журнал. 2023. Т. 85. № 5. С. 551–555. https://doi.org/10.31857/S0023291223600748
- Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities // Nature Reviews Cancer. 2017. V. 17. P. 20–37. https://doi.org/10.1038/nrc.2016.108
- Sedush N.G., Kadina Y.A, Razuvaeva E.V., et al. Nanoformulations of drugs based on biodegradable lactide copolymers with various molecular structures and architectures // Nanotechnology in Russia. 2021. V. 16. P. 421–438 https://doi.org/10.1134/S2635167621040121
- Hu X., Cheng J., Yuan R., et al. Gold nanoparticles: diagnostic and therapeutic applications in neurodegenerative disorders // Journal of Drug Targeting. 2025. P. 1–18. https://doi.org/10.1080/1061186X.2025.2509287
- Li B., Yakufu M., Xie R., et al. Functional gold nanoparticles in diagnosis and treatment of cancer: A systematic review // APL Materials. 2025. V. 13. № 5. P. 050602. https://doi.org/10.1063/5.0273264
- Dykman L., Khlebtsov B., Khlebtsov N. Drug delivery using gold nanoparticles // Advanced Drug Delivery Reviews. 2025. V. 216. P. 115481. https://doi.org/10.1016/j.addr.2024.115481
- Ефимова А.А., Сыбачин А.В. Стимул-чувствительные системы для доставки лекарств на основе бислойных липидных везикул: новые тенденции // Коллоидный журнал. 2023. Т. 85. № 5. С. 566–582. https://doi.org/10.31857/S0023291223600608
- Sun W., He W. Application of liposome-based drug delivery systems in tumor treatment // Journal of Cluster Science. 2025. V. 36. P. 118. https://doi.org/10.1007/s10876-025-02836-9
- Cheng Z., Huang H., Yin M., Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects // Experimental Hematology & Oncology. 2025. V. 14. P. 11. https://doi.org/10.1186/s40164-025-00602-1
- Efimova A.A., Abramova T.A., Yatsenko I.V., et al. pH-Sensitive multiliposomal containers for encapsulation and rapid release of bioactive substances // Molecules. 2025. V. 30. №12. P. 2608. https://doi.org/10.3390/molecules30122608
- Efimova A.A., Sybachin A.V., Chvalun S.N., et al. Biodegradable multi-liposomal containers // Polymer Science Series B. 2015. V. 57. P. 140–144. https://doi.org/10.1134/S1560090415020050
- Мищенко Е.В., Гилёва А.М., Марквичева Е.А., Королева М.Ю. Наноэмульсии и твердые липидные наночастицы с инкапсулированным доксорубицином и тимохиноном // Коллоидный журнал. 2023. Т. 85. № 5. С. 619–628. https://doi.org/10.31857/S002329122360058X
- Gupta A., Jadhav S.R., Colaco V., et al. Harnessing unique architecture and emerging strategies of solid lipid nanoparticles to combat colon cancer: A state-of-the-art review // International Journal of Pharmaceutics. 2025. V. 675. P. 125562. https://doi.org/10.1016/j.ijpharm.2025.125562
- Широких А.Д., Гурулева Ю.А., Маринец Е.А., Королева М.Ю. Липидные наночастицы для инкапсулирования и доставки лютеина // Коллоидный журнал. 2023. Т. 85. № 5. С. 705–714. https://doi.org/10.31857/S0023291223600530
- Меркулова М.А., Осипова Н.С., Калистратова А.В., Ермоленко Ю.В., Гельперина С.Э. Коллоидные системы доставки этопозида на основе биодеградируемых полимерных носителей (Обзор литературы) // Коллоидный журнал. 2023. Т. 85. № 5. С. 593–618. https://doi.org/10.31857/S0023291223600463
- Kuznetsova E.V., Sedush N.G., Puchkova Y.A., et al. Highly stable docetaxel-loaded nanoparticles based on poly(D,L-lactide)-b-poly(ethylene glycol) for cancer treatment: Preparation, characterization, and in vitro cytotoxicity studies // Polymers. 2023. V. 15. № 10. P. 2296. https://doi.org/10.3390/polym15102296
- Puchkova Y., Sedush N., Kuznetsova E., Chvalun S. Self-assembly behavior and cytotoxicity of PEG-b-PLA nanoparticles for improved oxaliplatin delivery: Effect of PLA block length// Reviews and Advances in Chemistry. 2023. V. 13. P. 152–159. https://doi.org/10.1134/S2634827623600056
- Dixit T., Vaidya A., Ravindran S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management // Future Science OA. 2025. V. 11. № 1. P. 2467591. https://doi.org/10.1080/20565623.2025.2467591
- Othman R.S., Zarei S., Haghighat H.R., et al. Recent advances in smart polymeric micelles for targeted drug delivery // Polymers for Advanced Technologies. 2025. V. 36. № 4. P. e70180. https://doi.org/10.1002/pat.70180
- Kuznetsova E.V., Vantsyan M.A., Kalinin K.T., et al. Poly(D,L-lactide-co-glycolide) nanoparticles modified by layer-by-layer adsorption of polyethyleneimine and dextran sulfate for cyanocobalamin embedding // BioNanoScience. 2025. V. 15. P. 174. https://doi.org/10.1007/s12668-024-01792-4
- Pallares R.M., Barmin R.A., Wang A., et al. Clinical cancer nanomedicines // Journal of Controlled Release. 2025. V. 385. P. 113991. https://doi.org/10.1016/j.jconrel.2025.113991
- van der Meel R., Sulheim E., Shi Y., et al. Smart cancer nanomedicine // Nature Nanotechnology. 2019. V. 14. P. 1007–1017. https://doi.org/10.1038/s41565-019-0567-y
- Gerken L.R.H., Gerdes M.E., Pruschy M., Hermann I.K. Prospects of nanoparticle-based radioenhancement for radiotherapy // Materials Horizons. 2023. V. 10. № 10. P. 4059–4082. https://doi.org/10.1039/D3MH00265A
- Konno T., Maeda H., Iwai K., et al. Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium // Cancer. 1984. V. 54. № 11. P. 2367–2374. https://doi.org/10.1002/1097-0142(19841201)54:11<2367::aid-cncr2820541111>3.0.co;2-f
- Vagena I.-A., Malapani C., Gatou M.-A., et al. Enhancement of EPR effect for passive tumor targeting: Current status and future perspectives // Applied Sciences. 2025. V. 15. № 6. P. 3189. https://doi.org/10.3390/app15063189
- Beach M.A., Nayanathara U., Gao Y., et al. Polymeric nanoparticles for drug delivery // Chemical Reviews. 2024. V. 124. № 9. P. 5505–5616. https://doi.org/10.1021/acs.chemrev.3c00705
- Öztürk K., Kaplan M., Çalış M. Effects of nanoparticle size, shape, and zeta potential on drug delivery // International Journal of Pharmaceutics. 2024. V. 666. P. 124799. https://doi.org/10.1016/j.ijpharm.2024.124799
- Dasgupta A., Sofias A.M., Kiessling F., Lammers T. Nanoparticle delivery to tumours: from EPR and ATR mechanisms to clinical impact // Nature Reviews Bioengineering. 2024. V. 4. P. 714–716. https://doi.org/10.1038/s44222-024-00203-3
- Zheng Y., Oz Y., Gu Y., et al. Rational design of polymeric micelles for targeted therapeutic selivery // Nanotoday. 2024. V. 55. P. 102147. https://doi.org/10.1016/j.nantod.2024.102147
- Othman R.S., Zarei S., Haghighat H.S., et al. Recent advances in smart polymeric micelles for targeted drug delivery // Polymers for Advanced Technologies. 2025. V. 36. № 4. P. e70180. https://doi.org/10.1002/pat.70180
- Yang C., Ma H., Liang Z., et al. Cyclic RGD modified dextran-quercetin polymer micelles for targeted therapy of breast cancer // International Journal of Biological Macromolecules. 2025. V. 308. P. 142272. https://doi.org/10.1016/j.ijbiomac.2025.142272
- Cabral H., Miyata K., Osada K., Kataoka K. Block copolymer micelles in nanomedicine applications // Chemical Reviews. 2018. V. 118. № 14. P. 6844−6892. https://doi.org/10.1021/acs.chemrev.8b00199
- Zhang C., Yan L., Wang X., et al. Progress, challenges, and future of nanomedicine // Nanotoday. 2020. V. 35. P. 101008. https://doi.org/10.1016/j.nantod.2020.101008
- Hwang D., Ramsey J.D., Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval // Advanced Drug Delivery Reviews. 2020. V. 156. P. 80–118. https://doi.org/10.1016/j.addr.2020.09.009
- Fan X., Chang J.Y., Lim Y.X., et al. Review of adaptive programmable materials and their bioapplications // ACS Applied Materials & Interfaces. 2016. V. 8. № 49. P. 333351–33370. https://doi.org/10.1021/acsami.6b09110
- Xiang Y., Oo N.N.L., Lee J.P., et al. Recent development of synthetic nonviral systems for sustained gene delivery // Drug Discovery Today. 2017. V. 22. № 9. P. 1318–1335. https://doi.org/10.1016/j.drudis.2017.04.001
- New Jain A., Bhardwaj K., Bansal M. Polymeric micelles as drug delivery system: Recent advances, approaches, applications and patents // Current Drug Safety. 2024. V. 19. № 2. P. 163–171. https://doi.org/10.2174/1574886318666230605120433
- Ahmad I., Kushwaha P., Usmani S., Tiwari A. Polymeric micelles: Revolutionizing cancer therapeutics for enhanced efficacy // Bionanoscience. 2025. V. 15. P. 186. https://doi.org/10.1007/s12668-025-01803-y
- Zhang Y., Ren T., Gou J. Strategies for improving the payload of small molecular drugs in polymeric micelles // Journal of Controlled Release. 2017. V. 261. P. 352–366. https://doi.org/10.1016/j.jconrel.2017.01.047
- Jin Z., Al Amili M., Guo S. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects // Biomedicines. 2024. V. 12. № 2. P. 417. https://doi.org/10.3390/biomedicines12020417
- Li S., Li T., Wang X. Research progress of treating ulcerative colitis and colon cancer by using oral colon targeted drug delivery system based on polymer micelles // Journal of Drug Targeting. 2025. P. 1–26. https://doi.org/10.1080/1061186X.2025.2514564
- Sil D., Kumar D., Das Kurmi D., Kumar M. Recent progress in polymeric micelle – Enabled targeted nanotherapeutics for diabetic retinopathy // Journal of Drug Delivery Science and Technology. 2025. V. 104. P. 106448. https://doi.org/10.1016/j.jddst.2024.106448
- Junnuthula V., Kolimi P., Nyavanandi D., et al. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations // Pharmaceutics. 2022. V. 14. № 9. P. 1860. https://doi.org/10.3390/pharmaceutics14091860
- Ghezzi M., Pescina S., Padula C., et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions // Journal of Controlled Release. 2021. V. 332. P. 312–336 https://doi.org/10.1016/j.jconrel.2021.02.031
- Lin M., Dai Y., Xia F., Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications // Materials Science and Engineering: C. 2021. V. 119. P. 111626 https://doi.org/10.1016/j.msec.2020.111626
- Zhang X., Zhuo J., Wang D., Zhu X. Supramolecular polymers for drug delivery // Chemistry – A European Journal. 2025. V. 31. № 17. P. e202404617. https://doi.org/10.1002/chem.202404617
- Yao X., Cao X., He J., et al. Controlled fabrication of unimolecular micelles as versatile nanoplatform for multifunctional applications // Small. 2024. V. 20. № 48. P. 2405816. https://doi.org/10.1002/smll.202405816
- O’Reilly R.K., Hawker C.J., Wooley K.L. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility // Chemical Society Reviews. 2006. V. 35. № 11. P. 1068–1083. https://doi.org/10.1039/B514858H
- Bauer T.A., Alberg I., Zengerling L.A., et al. Tuning the cross-linking density and cross-linker in core cross-linked polymeric micelles and its effects on the particle stability in human blood plasma and mice // Biomacromolecules. 2023. V. 24. № 8. P. 3545–3556. https://doi.org/10.1021/acs.biomac.3c00308
- Nishiyama N., Kato Y., Sugiyama Y., Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery dystem // Pharmaceutical Research. 2001. V. 18. № 7. P. 1035–1041. https://doi.org/10.1023/a:1010908916184
- Bauer T.A., Eckrich J., Wiesmann N., et al. Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(II) complexes // Journal of Material Chemistry B. 2021. V. 9. № 9. P. 8211−8223. https://doi.org/10.1039/D1TB01336J
- Talelli M., Barz M., Rijcken C.J., et al. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation // Nano Today. 2015. V. 10. № 1. P. 93−117. https://doi.org/10.1016/j.nantod.2015.01.005
- Hu Q., Rijcken C.J., Bansal R., et al. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles // Biomaterials. 2015. V. 53. P. 370−378. https://doi.org/10.1016/j.biomaterials.2015.02.085
- Prochάzka K., Baloch M.K., Tuzar Z. Photochemical stabilization of block copolymer micelles // Die Makromolekulare Chemie. 1979. V. 180. № 10. P. 2521–2523. https://doi.org/10.1002/macp.1979.021801029
- Thurmond K.B., Kowalewski T., Wolley K.L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles // Journal of the American Chemical Society. 1996. V. 118. № 30. P. 7239–7240. https://doi.org/10.1021/ja961299h
- Huang H., Kowalewski T., Remsen E.E., et al. Hydrogel-coated glassy nanospheres: A novel method for the synthesis of shell cross-linked knedels // Journal of the American Chemical Society. 1997. V. 119. № 48. P. 11653–11659. https://doi.org/10.1021/ja9717469
- Shuai X., Merdan T., Schaper A.K., et al. Core-cross-linked polymeric micelles as paclitaxel carriers // Bioconjugate Chemistry. 2004. V. 15. № 3. P. 441–448. https://doi.org/10.1021/bc034113u
- Matsumoto K., Hirabayashi T., Harada T., Matsuoka H. Synthesis of shell cross-linked block copolymer micelles with poly(p-styrenesulfonic acid) in the micelle core // Macromolecules. 2005. V. 38. № 24. P. 9957–9962. https://doi.org/10.1021/ma0511651
- Yang R., Meng F., Ma S., et al. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel // Biomacromolecules. 2011. V. 12. № 8. P. 3047–3055. https://doi.org/10.1021/bm2006856
- Yan L., Yang L., He H., et al. Photo-cross-linked mPEG-poly(γ-cinnamyl-L-glutamate) micelles as stable drug carriers // Polymer Chemistry. 2012. V. 3. № 5. P. 1300–1307. https://doi.org/10.1039/C2PY20049J
- Piogé S., Nesterenko A., Brotons G., et al. Core cross-linking of dynamic diblock copolymer micelles: Quantitative study of photopolymerization efficiency and ,icelle structure // Macromolecules. 2011. V. 44. № 3. P. 594–603. https://doi.org/10.1021/ma102284y
- Yilmaz Z.E., Vanslambrouk S., Cajot S., et al. Core cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers // RSC Advances. 2016. V. 6. № 48. P. 42081–42088. https://doi.org/10.1039/C6RA07422G
- Stouten J., Sijstermans N., Babilotte J., et al. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups // Polymer Chemistry. 2022. V. 13. № 33. P. 4832–4847. https://doi.org/10.1039/D2PY00631F
- Li J., Guo S., Wang M., et al. Poly(lactic acid)/poly(ethylene glycol) block copolymer based shell or core cross-linked micelles for controlled release of hydrophobic drug // RSC Advances. 2015. V. 5. № 25. P. 19484–19492. https://doi.org/10.1039/C4RA14376K
- Murthy K.S., Ma Q., Clark C.G., et al. Fundamental design aspects of amphiphilic shell-crosslinked nanoparticles for controlled release applications // Chemical Communications. 2001. № 8. P. 773–774. https://doi.org/10.1039/b100819f
- Zhou Q., Zhang L., Yang T.H., Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy // International Journal of Nanomedicine. 2018. V. 13. P. 2921–2942. https://doi.org/10.2147/IJN.S158696
- Wei H., Cheng C., Chang C., et al. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate) // Langmuir. 2008. V. 24. № 9. P. 4564–4570. https://doi.org/10.1021/la703320h
- Sάnchez-Bustos E., Cornejo-Bravo J.M., Licea-Claverie A. Core cross-linked star polymers for temperature/pH controlled delivery of 5-fluorouracil // Journal of Chemistry. 2016. V. 2016. P. 4543191. https://doi.org/10.1155/2016/4543191
- Bai J., Wang J., Feng Y., et al. Stability-tunable core-crosslinked polymeric micelles based on an imidazole-bearing block polymer for pH-responsive drug delivery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 639. P. 128353. https://doi.org/10.1016/j.colsurfa.2022.128353
- Chen J., Ouyang J., Kong J., et al. Photo-cross-linked and pH-sensitive biodegradable micelles for doxorubicin delivery // ACS Applied Materials & Interfaces. 2013. V. 5. № 8. P. 3108–3117. https://doi.org/10.1021/am400017q
- Bayram N.N., Ulu G.T., Topuzoğullari M., et al. HER2-targeted, degradable core cross-linked micelles for specific and dual pH-Sensitive DOX release // Macromolecular Bioscience. 2022. V. 22. № 1. P. 2100375. https://doi.org/10.1002/mabi.202100375
- Gulfam M., Matini T., Monteiro P.F., et al. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells // Biomaterials Science. 2017. V. 5. № 3. P. 532–550. https://doi.org/10.1039/C6BM00888G
- Kumar P., Kim S.-H., Yadav S., et al. Redox-responsive core-cross-linked micelles of miktoarm poly(ethylene oxide)-b-poly(furfuryl methacrylate) for anticancer drug delivery // ACS Applied Materials & Interfaces. 2023. V. 15. № 10. P. 12719–12734. https://doi.org/10.1021/acsami.2c21152
- Yadav S., Ramesh K., Reddy O.S., et al. Redox-responsive comparison of diselenide and disulfide core-cross-linked micelles for drug delivery application // Pharmaceutics. 2023. V. 15. № 4. P 1159. https://doi.org/10.3390/pharmaceutics15041159
- Biswas D., An S.Y., Li Y., et al. Intracellular delivery of colloidally stable core-cross-linked triblock copolymer micelles with glutathione-responsive enhanced drug release for cancer therapy // Molecular Pharmaceutics. 2017. V. 14. № 8. P. 2518–2528. https://doi.org/10.1021/acs.molpharmaceut.6b01146
- Feng Y., Bai J., Du X., Zhao X. Shell-cross-linking of polymeric micelles by Zn coordination for photo- and pH dual-sensitive drug delivery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. V. 666. P. 131369. https://doi.org/10.1016/j.colsurfa.2023.131369
- Gardey E., Sobotta F.H., Hoeppener S., et al. Influence of core cross-linking and shell composition of polymeric micelles on immune response and their interaction with human monocytes // Biomacromolecules. 2020. V. 21. № 4. P. 1393–1406. https://doi.org/10.1021/acs.biomac.9b01656
- Chen S., Cheng S.-X., Zhuo R.-X. Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery // Macromolecular Bioscience. 2010. V. 11. № 5. P. 576–589. https://doi.org/10.1002/mabi.201000427
- Jimaja S., Varlas S., Foster J.C., et al. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(arylisocyanide)s // Polymer Chemistry. 2022. V. 13. № 27. P. 4047–4053. https://doi.org/10.1039/d2py00397j
- Anirudhan T.S., Varghese S., Manjusha V. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of paclitaxel and curcumin // International Journal of Biological Macromolecules. 2021. V. 192. P. 950–957. https://doi.org/10.1016/j.ijbiomac.2021.10.061
- Guan S., Zhang Q., Bao J., et al. Phosphatidylserine targeting peptide-functionalized pH sensitive mixed micelles for enhanced anti-tumor drug delivery // European Journal of Pharmaceutics and Biopharmaceutics. 2020. V. 147. P. 87–101. https://doi.org/10.1016/j.ejpb.2019.12.012
- Patel H.S., Shaikh S.J., Ray D., et al. Formulation, solubilization, and in vitro characterization of quercetin‑incorporated mixed micelles of PEO‑PPO‑PEO block copolymers // Applied Biochemistry and Biotechnology. 2022. V. 194. P. 445–463. https://doi.org/10.1007/s12010-021-03691-w
- Stepanova D.A., Pigareva V.A., Berkovich A.K., et al. Ultrasonic film rehydration synthesis of mixed polylactide micelles for enzyme-resistant drug delivery nanovehicles // Polymers. 2022. V. 14. № 19. P. 4013. https://doi.org/10.3390/polym14194013
- Gerardos A.M., Balafouti A., Pispas S. Mixed hyperbranched/triblock copolymer micelle assemblies: Physicochemical properties and potential for drug encapsulation // Macromolecular Chemistry and Physics. 2023. V. 224. № 17. P. 2300109. https://doi.org/10.1002/macp.202300109
- Alexandridis P., Holzwarth J.F., Hatton T.A. Micellization of poly (ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association // Macromolecules. 1994. V. 27. № 9. P. 2414–2425. https://doi.org/10.1021/ma00087a009
- Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments // Macromolecules. 1995. V. 28. № 15. P. 5294–5299. https://doi.org/10.1021/ma00119a019
- Zheng P., Liu Y., Chen J., et al. Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery // Chinese Chemical Letters. 2020. V. 31. № 5. P. 1178–1182. https://doi.org/10.1016/j.cclet.2019.12.001
- Luo Y.-L., Yuan J.-F., Shi J.-H., Gao Q.-Y. Synthesis and characterization of polyion complex micelles and their controlled release of folic acid // Journal of Colloid and Interface Science. 2010. V. 350. № 1. P. 140–147. https://doi.org/10.1016/j.jcis.2010.06.014
- Dufresne M.-H., Elsabahy M., Leroux J.-C. Characterization of polyion complex micelles designed to address the challenges of oligonucleotide delivery // Pharmaceutical Research. 2008. V. 25. P. 2083–2093. https://doi.org/10.1007/s11095-008-9591-6
- Zhao J., Liu T., Li Y., et al. Hepatocellular carcinoma epi-immunotherapy with polyion complex micelles co-delivering HDAC8 inhibitor and PD-L1 siRNA // Chemical Engineering Journal. 2025. V. 503. P. 158138. https://doi.org/10.1016/j.cej.2024.158138
- Schwiertz D., Angelina J., Zhang H., Barz M. Miktoarm star-polypept(o)ide-based polyion complex micelles for the delivery of large nucleic acids // Biomacromolecules. 2024. V. 25. № 10. P. 6539–6554. https://doi.org/10.1021/acs.biomac.4c00695
- Chen P., Yang W., Hong T,. et al. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC // Biomaterials. 2022. V. 288. P. 121748. https://doi.org/10.1016/j.biomaterials.2022.121748
- Nakai K., Nishiuchi M., Inoue M., et al. Preparation and characterization of polyion complex micelles with phosphobetaine shells // Langmuir. 2013. V. 29. № 31. P. 9651–9661. https://doi.org/10.1021/la401063b
- Pham T.T., Takahashi R., Pham T.D., Yusa S. Stable water-soluble polyion complex micelles composed of oppositely charged diblock copolymers and reinforced by hydrophobic interactions // Chemistry Letters. 2022. V. 51. № 8. P. 877–880. https://doi.org/10.1246/cl.220241
- Pham T.T., Pham T.D., Yusa S. Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions // Polymer Journal. 2022. V. 54. № 9. P. 1091–1101. https://doi.org/10.1038/s41428-022-00659-3
- Aydinlioglu E., Abdelghani M., Le Fer G., et al. Robust polyion complex vesicles (PICsomes) based on PEO-b-poly(amino acid) copolymers combining electrostatic and hydrophobic interactions: Formation, siRNA loading and intracellular delivery // Macromolecular Chemistry and Physics. 2022. V. 224. № 1. P. 2200306. https://doi.org/10.1002/macp.202200306
- Saklani R., Domb A.J. Peptide and protein stereocomplexes // ACS Omega. 2024. V. 9. № 16. P. 17726–17740. https://doi.org/10.1021/acsomega.4c00178
- Ikada Y., Jamshidi K., Tsuji H., Hyon, S.-H. Stereocomplex formation between enantiomeric poly(lactides) // Macromolecules. 1987. V. 20. № 4. P. 904–906. https://doi.org/10.1021/ma00170a034
- De Santis P., Kovacs A.J. Molecular conformation of poly(S-laictide) // Biopolymers. 1968. V. 6. № 3. P. 209–306. https://doi.org/10.1002/bip.1968.360060305
- Okihara T., Tsuji M., Kawaguchi A., et al. Crystal structure of sterocomplex of poly(l-alanine-lactide) and poly(d-lactide) // Journal of Macromolecular Science, Part B. 1991. V. 30. № 1–2. P. 119–140. https://doi.org/10.1080/00222349108245788
- Qiu Y., Wei X., Lam J.W.Y., et al. Chiral nanostructures from artificial helical polymers: Recent advances in synthesis, regulation, and functions // ACS Nano. 2025. V. 19. № 1. P. 229–280. https://doi.org/10.1021/acsnano.4c14797
- Piao L., Li Y., Zhang H., Jiang J. Stereocomplex micelle loaded with paclitaxel for enhanced therapy of breast cancer in an orthotopic mouse model // Journal of Biomaterials Science, Polymer Edition. 2019. V. 30. № 3. P. 233–246. https://doi.org/10.1080/09205063.2019.1565612
- Li W., Fan X., Wang X., et al. Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery // Materials Science and Engineering: C. 2018. V. 91. P. 688–695. https://doi.org/10.1016/j.msec.2018.06.006
- Kost B., Brzeziński M., Cieślak M., et al. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers // European Polymer Journal. 2019. V. 120. P. 109271. https://doi.org/10.1016/j.eurpolymj.2019.109271
- Niu H., Li J., Cai Q., et al. Molecular stereocomplexation for enhancing the stability of nanoparticles encapsulated in polymeric micelles for magnetic resonance imaging // Langmuir. 2020. V. 36. № 46. P. 13881−13889. https://doi.org/10.1021/acs.langmuir.0c02281
- Liu Y., Xu C., Fan X., et al. Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery // Materials Science and Engineering: C. 202. V. 108. P. 110464. https://doi.org/10.1016/j.msec.2019.110464
- Desyatskova A.M., Kuznetsova E.V., Puchkova Y.A., et al. Effect of stereocomplex formation between enantiomeric poly(l,l-lactide) and poly(d,d-lactide) blocks on self-organization of amphiphilic poly(lactide)-block-poly(ethylene oxide) copolymers in dilute aqueous solution // Mendeleev Communications. 2023. V. 33. № 1. P. 86–89. https://doi.org/10.1016/j.mencom.2023.01.027
- Brizzolara D., Cantow H.-J., Diederichs K., et al. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s // Macromolecules. 1996. V. 29. № 1. P. 191–197. https://doi.org/10.1021/ma951144e
- Hu C., Zhang Y., Pang X., Chen X. Poly(lactic acid): Recent stereochemical advances and new materials engineering // Advanced Materials. 2024. V. 37. № 22. P. 2412185. https://doi.org/10.1002/adma.202412185
- Rijpkema S.J., Toebes B.J., van Vlaenderen L., et al. Influence of tacticity on the self-assembly of poly(ethylene glycol)-b-poly(lactic acid) block copolymers// ACS Macro Letters. 2025. V. 14. № 1. P. 101–106. https://doi.org/10.1021/acsmacrolett.4c00758
- Shapira-Furman T., Domb A.J. Insulin extended release from PLA-PEG stereocomplex nanoparticles // Macromolecular Bioscience. 2023. V. 24. № 5. P. 2300497. https://doi.org/10.1002/mabi.202300497
- Ohya Y., Yoshida Y., Kumagae T., Kuzuya A. Gelation upon the mixing of amphiphilic graft and triblock copolymers containing enantiomeric polylactide segments through stereocomplex formation // Gels. 2024. V. 10. № 2. P. 139. https://doi.org/10.3390/gels10020139
- Фомина Ю.С., Семкина А.С., Загоскин Ю.Д., Алексанян М.М., Чвалун С.Н., Григорьев Т.Е. Биосовместимые гидрогели на основе биоразлагаемых полиэфиров и их сополимеров // Коллоидный журнал. 2023. Т. 85. № 5. С. 682–704. https://doi.org/10.31857/S0023291223600554
- Fan X., Li Z., Loh X.J. Recent development of unimolecular micelles as functional materials and applications // Polymer Chemistry. 2016. V. 7. № 38. P. 5898–5919. https://doi.org/10.1039/C6PY01006G
- Yang D.-P., Oo M.N.N.L., Deen G.R., et al. Nano-star-shaped polymers for drug delivery applications // Molecular Rapid Communications. 2017. V. 38. № 21. P. 1700410. https://doi.org/10.1002/marc.201700410
- Liu W., Li J., Qin Z., et al. Zwitterionic unimolecular micelles with pH and temperature response: Enhanced in vivo circulation stability and tumor therapeutic efficiency // Langmuir. 2020. V. 36. № 13. P. 3356–3366. https://doi.org/10.1021/acs.langmuir.0c00206
- Liu F., Wang D., Zhang M., et al. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery // Acta Biomaterialia. 2022. V. 144. P. 15–31. https://doi.org/10.1016/j.actbio.2022.03.028
- Liu F., Wang J., Qin Y., et al. One-pot synthesis of enzyme and GSH dual-responsive zwitterionic copolymers with cross-linked shells for enhanced anticancer drug delivery // ACS Applied Polymer Materials. 2025. V. 7. № 3. P. 2061–2072. https://doi.org/10.1021/acsapm.4c03864
- Tondock F., Nash D., Hudziak C., et al. Design and synthesis of amphiphilic statistical copolymers forming unimeric micelles with thermoresponsive behaviour in the physiological range // Polymer Chemistry. 2025. V. 16. № 19. P. 2216–2231. https://doi.org/10.1039/D4PY01450B
- Pathan S., Jayakannan M. Tweaking unimolecular micellar nanoarchitecture for drug delivery in tumor xenograft mice models // Small. 2025. V. 21. № 31. P. 2503155. https://doi.org/10.1002/smll.202503155
- Gomzyak V.I., Sedush N.G., Puchkov A.A., et al. Linear and branched lactide polymers for targeted drug delivery systems // Polymer Science, Series B. 2021. V. 63. № 3. P. 257–271. https://doi.org/10.1134/S1560090421030064
- Puchkov A.A., Sedush N.G., Buzin A.I., et al. Synthesis and characterization of well-defined star-shaped poly(L-lactides) // Polymer. 2023. V. 264. P. 125573. https://doi.org/10.1016/j.polymer.2022.125573
- Fox M.E., Szoka F.C., Frechet J.M.J. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture // Accounts of Chemical Research. 2009. V. 42. № 8. P. 1141–1151. https://doi.org/10.1021/ar900035f
- Gillies E.R., Frechet J.M.J. Designing macromolecules for therapeutic applications: Polyester dendrimer – poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture // Journal of the American Chemical Society. 2002. V. 124. № 47. P. 14137–14146. https://doi.org/10.1021/ja028100n
- Gillies E.R., Dy E., Frechet J.M.J., Szoka F.C. Biological evaluation of polyester dendrimer: Poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture // Molecular Pharmaceutics. 2005. V. 2. № 2. P. 129–138. https://doi.org/10.1021/mp049886u
- Phan Q.T., Rabanel J.-M., Mekhjian D., et al. Core–shell bottlebrush polymers: Unmatched delivery of small active compounds deep into tissues // Small. 2024. V. 21. № 5. P. 2408616. https://doi.org/10.1002/smll.202408616
Supplementary files


