ПОЛИМЕРНЫЕ МИЦЕЛЛЫ ДЛЯ НАНОМЕДИЦИНЫ: КАК ПОВЫСИТЬ ИХ УСТОЙЧИВОСТЬ?

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Полимерные мицеллы остаются активно изучаемыми объектами в области наномедицины, включая фармакотерапию рака, на протяжении нескольких десятилетий. Благодаря своей структуре «ядро–корона», регулируемым параметрам (размеру, форме, сорбционной емкости, скорости деградации и др.), способности придавать стимул-чувствительные свойства и пр. полимерные мицеллы зарекомендовали себя как перспективные носители, способные эффективно инкапсулировать различные лекарственные вещества, доставлять их в целевые ткани и органы, обеспечивая при этом контролируемое и пролонгированное высвобождение. Несмотря на многочисленные исследования, на сегодняшний день в разных странах мира одобрено всего четыре нанопрепарата на основе полимерных мицелл для лечения рака. В представленном обзоре обсуждается один из существенных недостатков полимерных мицелл как носителей лекарств, а именно возможность их распада на неассоциированные макромолекулы при разбавлении и/или изменении условий окружающей среды (pH, температуры, ионной силы раствора), и рассматриваются некоторые стратегии, используемые для устранения этого недостатка, связанного с недостаточной термодинамической стабильностью. К этим стратегиям относятся химическая сшивка полимерных цепей, формирующих ядро или корону мицелл, физическая сшивка сегментов мицелл за счет дополнительных гидрофобных, электростатических взаимодействий или стереокомплексообразования, а также образование мономолекулярных мицелл.

Об авторах

Е. В Кузнецова

Национальный исследовательский центр «Курчатовский институт»; Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: kuznetsova.kate992@gmail.com
Москва, Россия

С. Н Чвалун

Национальный исследовательский центр «Курчатовский институт»; Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Москва, Россия

Список литературы

  1. Riehemann K., Schneider S.W., Luger T.A. et al. Nanomedicine – Challenge and perspectives // Angewandte Chemie International Edition. 2025. V. 48. № 5. P. 872–897. https://doi.org/10.1002/anie.200802585
  2. Кузнецова Е.В., Кузнецов Н.М. Коллоидные объекты в биомедицине: Современные тенденции и перспективы // Коллоидный журнал. 2023. Т. 85. № 5. С. 551–555. https://doi.org/10.31857/S0023291223600748
  3. Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities // Nature Reviews Cancer. 2017. V. 17. P. 20–37. https://doi.org/10.1038/nrc.2016.108
  4. Sedush N.G., Kadina Y.A, Razuvaeva E.V., et al. Nanoformulations of drugs based on biodegradable lactide copolymers with various molecular structures and architectures // Nanotechnology in Russia. 2021. V. 16. P. 421–438 https://doi.org/10.1134/S2635167621040121
  5. Hu X., Cheng J., Yuan R., et al. Gold nanoparticles: diagnostic and therapeutic applications in neurodegenerative disorders // Journal of Drug Targeting. 2025. P. 1–18. https://doi.org/10.1080/1061186X.2025.2509287
  6. Li B., Yakufu M., Xie R., et al. Functional gold nanoparticles in diagnosis and treatment of cancer: A systematic review // APL Materials. 2025. V. 13. № 5. P. 050602. https://doi.org/10.1063/5.0273264
  7. Dykman L., Khlebtsov B., Khlebtsov N. Drug delivery using gold nanoparticles // Advanced Drug Delivery Reviews. 2025. V. 216. P. 115481. https://doi.org/10.1016/j.addr.2024.115481
  8. Ефимова А.А., Сыбачин А.В. Стимул-чувствительные системы для доставки лекарств на основе бислойных липидных везикул: новые тенденции // Коллоидный журнал. 2023. Т. 85. № 5. С. 566–582. https://doi.org/10.31857/S0023291223600608
  9. Sun W., He W. Application of liposome-based drug delivery systems in tumor treatment // Journal of Cluster Science. 2025. V. 36. P. 118. https://doi.org/10.1007/s10876-025-02836-9
  10. Cheng Z., Huang H., Yin M., Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects // Experimental Hematology & Oncology. 2025. V. 14. P. 11. https://doi.org/10.1186/s40164-025-00602-1
  11. Efimova A.A., Abramova T.A., Yatsenko I.V., et al. pH-Sensitive multiliposomal containers for encapsulation and rapid release of bioactive substances // Molecules. 2025. V. 30. №12. P. 2608. https://doi.org/10.3390/molecules30122608
  12. Efimova A.A., Sybachin A.V., Chvalun S.N., et al. Biodegradable multi-liposomal containers // Polymer Science Series B. 2015. V. 57. P. 140–144. https://doi.org/10.1134/S1560090415020050
  13. Мищенко Е.В., Гилёва А.М., Марквичева Е.А., Королева М.Ю. Наноэмульсии и твердые липидные наночастицы с инкапсулированным доксорубицином и тимохиноном // Коллоидный журнал. 2023. Т. 85. № 5. С. 619–628. https://doi.org/10.31857/S002329122360058X
  14. Gupta A., Jadhav S.R., Colaco V., et al. Harnessing unique architecture and emerging strategies of solid lipid nanoparticles to combat colon cancer: A state-of-the-art review // International Journal of Pharmaceutics. 2025. V. 675. P. 125562. https://doi.org/10.1016/j.ijpharm.2025.125562
  15. Широких А.Д., Гурулева Ю.А., Маринец Е.А., Королева М.Ю. Липидные наночастицы для инкапсулирования и доставки лютеина // Коллоидный журнал. 2023. Т. 85. № 5. С. 705–714. https://doi.org/10.31857/S0023291223600530
  16. Меркулова М.А., Осипова Н.С., Калистратова А.В., Ермоленко Ю.В., Гельперина С.Э. Коллоидные системы доставки этопозида на основе биодеградируемых полимерных носителей (Обзор литературы) // Коллоидный журнал. 2023. Т. 85. № 5. С. 593–618. https://doi.org/10.31857/S0023291223600463
  17. Kuznetsova E.V., Sedush N.G., Puchkova Y.A., et al. Highly stable docetaxel-loaded nanoparticles based on poly(D,L-lactide)-b-poly(ethylene glycol) for cancer treatment: Preparation, characterization, and in vitro cytotoxicity studies // Polymers. 2023. V. 15. № 10. P. 2296. https://doi.org/10.3390/polym15102296
  18. Puchkova Y., Sedush N., Kuznetsova E., Chvalun S. Self-assembly behavior and cytotoxicity of PEG-b-PLA nanoparticles for improved oxaliplatin delivery: Effect of PLA block length// Reviews and Advances in Chemistry. 2023. V. 13. P. 152–159. https://doi.org/10.1134/S2634827623600056
  19. Dixit T., Vaidya A., Ravindran S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management // Future Science OA. 2025. V. 11. № 1. P. 2467591. https://doi.org/10.1080/20565623.2025.2467591
  20. Othman R.S., Zarei S., Haghighat H.R., et al. Recent advances in smart polymeric micelles for targeted drug delivery // Polymers for Advanced Technologies. 2025. V. 36. № 4. P. e70180. https://doi.org/10.1002/pat.70180
  21. Kuznetsova E.V., Vantsyan M.A., Kalinin K.T., et al. Poly(D,L-lactide-co-glycolide) nanoparticles modified by layer-by-layer adsorption of polyethyleneimine and dextran sulfate for cyanocobalamin embedding // BioNanoScience. 2025. V. 15. P. 174. https://doi.org/10.1007/s12668-024-01792-4
  22. Pallares R.M., Barmin R.A., Wang A., et al. Clinical cancer nanomedicines // Journal of Controlled Release. 2025. V. 385. P. 113991. https://doi.org/10.1016/j.jconrel.2025.113991
  23. van der Meel R., Sulheim E., Shi Y., et al. Smart cancer nanomedicine // Nature Nanotechnology. 2019. V. 14. P. 1007–1017. https://doi.org/10.1038/s41565-019-0567-y
  24. Gerken L.R.H., Gerdes M.E., Pruschy M., Hermann I.K. Prospects of nanoparticle-based radioenhancement for radiotherapy // Materials Horizons. 2023. V. 10. № 10. P. 4059–4082. https://doi.org/10.1039/D3MH00265A
  25. Konno T., Maeda H., Iwai K., et al. Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium // Cancer. 1984. V. 54. № 11. P. 2367–2374. https://doi.org/10.1002/1097-0142(19841201)54:11<2367::aid-cncr2820541111>3.0.co;2-f
  26. Vagena I.-A., Malapani C., Gatou M.-A., et al. Enhancement of EPR effect for passive tumor targeting: Current status and future perspectives // Applied Sciences. 2025. V. 15. № 6. P. 3189. https://doi.org/10.3390/app15063189
  27. Beach M.A., Nayanathara U., Gao Y., et al. Polymeric nanoparticles for drug delivery // Chemical Reviews. 2024. V. 124. № 9. P. 5505–5616. https://doi.org/10.1021/acs.chemrev.3c00705
  28. Öztürk K., Kaplan M., Çalış M. Effects of nanoparticle size, shape, and zeta potential on drug delivery // International Journal of Pharmaceutics. 2024. V. 666. P. 124799. https://doi.org/10.1016/j.ijpharm.2024.124799
  29. Dasgupta A., Sofias A.M., Kiessling F., Lammers T. Nanoparticle delivery to tumours: from EPR and ATR mechanisms to clinical impact // Nature Reviews Bioengineering. 2024. V. 4. P. 714–716. https://doi.org/10.1038/s44222-024-00203-3
  30. Zheng Y., Oz Y., Gu Y., et al. Rational design of polymeric micelles for targeted therapeutic selivery // Nanotoday. 2024. V. 55. P. 102147. https://doi.org/10.1016/j.nantod.2024.102147
  31. Othman R.S., Zarei S., Haghighat H.S., et al. Recent advances in smart polymeric micelles for targeted drug delivery // Polymers for Advanced Technologies. 2025. V. 36. № 4. P. e70180. https://doi.org/10.1002/pat.70180
  32. Yang C., Ma H., Liang Z., et al. Cyclic RGD modified dextran-quercetin polymer micelles for targeted therapy of breast cancer // International Journal of Biological Macromolecules. 2025. V. 308. P. 142272. https://doi.org/10.1016/j.ijbiomac.2025.142272
  33. Cabral H., Miyata K., Osada K., Kataoka K. Block copolymer micelles in nanomedicine applications // Chemical Reviews. 2018. V. 118. № 14. P. 6844−6892. https://doi.org/10.1021/acs.chemrev.8b00199
  34. Zhang C., Yan L., Wang X., et al. Progress, challenges, and future of nanomedicine // Nanotoday. 2020. V. 35. P. 101008. https://doi.org/10.1016/j.nantod.2020.101008
  35. Hwang D., Ramsey J.D., Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval // Advanced Drug Delivery Reviews. 2020. V. 156. P. 80–118. https://doi.org/10.1016/j.addr.2020.09.009
  36. Fan X., Chang J.Y., Lim Y.X., et al. Review of adaptive programmable materials and their bioapplications // ACS Applied Materials & Interfaces. 2016. V. 8. № 49. P. 333351–33370. https://doi.org/10.1021/acsami.6b09110
  37. Xiang Y., Oo N.N.L., Lee J.P., et al. Recent development of synthetic nonviral systems for sustained gene delivery // Drug Discovery Today. 2017. V. 22. № 9. P. 1318–1335. https://doi.org/10.1016/j.drudis.2017.04.001
  38. New Jain A., Bhardwaj K., Bansal M. Polymeric micelles as drug delivery system: Recent advances, approaches, applications and patents // Current Drug Safety. 2024. V. 19. № 2. P. 163–171. https://doi.org/10.2174/1574886318666230605120433
  39. Ahmad I., Kushwaha P., Usmani S., Tiwari A. Polymeric micelles: Revolutionizing cancer therapeutics for enhanced efficacy // Bionanoscience. 2025. V. 15. P. 186. https://doi.org/10.1007/s12668-025-01803-y
  40. Zhang Y., Ren T., Gou J. Strategies for improving the payload of small molecular drugs in polymeric micelles // Journal of Controlled Release. 2017. V. 261. P. 352–366. https://doi.org/10.1016/j.jconrel.2017.01.047
  41. Jin Z., Al Amili M., Guo S. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects // Biomedicines. 2024. V. 12. № 2. P. 417. https://doi.org/10.3390/biomedicines12020417
  42. Li S., Li T., Wang X. Research progress of treating ulcerative colitis and colon cancer by using oral colon targeted drug delivery system based on polymer micelles // Journal of Drug Targeting. 2025. P. 1–26. https://doi.org/10.1080/1061186X.2025.2514564
  43. Sil D., Kumar D., Das Kurmi D., Kumar M. Recent progress in polymeric micelle – Enabled targeted nanotherapeutics for diabetic retinopathy // Journal of Drug Delivery Science and Technology. 2025. V. 104. P. 106448. https://doi.org/10.1016/j.jddst.2024.106448
  44. Junnuthula V., Kolimi P., Nyavanandi D., et al. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations // Pharmaceutics. 2022. V. 14. № 9. P. 1860. https://doi.org/10.3390/pharmaceutics14091860
  45. Ghezzi M., Pescina S., Padula C., et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions // Journal of Controlled Release. 2021. V. 332. P. 312–336 https://doi.org/10.1016/j.jconrel.2021.02.031
  46. Lin M., Dai Y., Xia F., Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications // Materials Science and Engineering: C. 2021. V. 119. P. 111626 https://doi.org/10.1016/j.msec.2020.111626
  47. Zhang X., Zhuo J., Wang D., Zhu X. Supramolecular polymers for drug delivery // Chemistry – A European Journal. 2025. V. 31. № 17. P. e202404617. https://doi.org/10.1002/chem.202404617
  48. Yao X., Cao X., He J., et al. Controlled fabrication of unimolecular micelles as versatile nanoplatform for multifunctional applications // Small. 2024. V. 20. № 48. P. 2405816. https://doi.org/10.1002/smll.202405816
  49. O’Reilly R.K., Hawker C.J., Wooley K.L. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility // Chemical Society Reviews. 2006. V. 35. № 11. P. 1068–1083. https://doi.org/10.1039/B514858H
  50. Bauer T.A., Alberg I., Zengerling L.A., et al. Tuning the cross-linking density and cross-linker in core cross-linked polymeric micelles and its effects on the particle stability in human blood plasma and mice // Biomacromolecules. 2023. V. 24. № 8. P. 3545–3556. https://doi.org/10.1021/acs.biomac.3c00308
  51. Nishiyama N., Kato Y., Sugiyama Y., Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery dystem // Pharmaceutical Research. 2001. V. 18. № 7. P. 1035–1041. https://doi.org/10.1023/a:1010908916184
  52. Bauer T.A., Eckrich J., Wiesmann N., et al. Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(II) complexes // Journal of Material Chemistry B. 2021. V. 9. № 9. P. 8211−8223. https://doi.org/10.1039/D1TB01336J
  53. Talelli M., Barz M., Rijcken C.J., et al. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation // Nano Today. 2015. V. 10. № 1. P. 93−117. https://doi.org/10.1016/j.nantod.2015.01.005
  54. Hu Q., Rijcken C.J., Bansal R., et al. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles // Biomaterials. 2015. V. 53. P. 370−378. https://doi.org/10.1016/j.biomaterials.2015.02.085
  55. Prochάzka K., Baloch M.K., Tuzar Z. Photochemical stabilization of block copolymer micelles // Die Makromolekulare Chemie. 1979. V. 180. № 10. P. 2521–2523. https://doi.org/10.1002/macp.1979.021801029
  56. Thurmond K.B., Kowalewski T., Wolley K.L. Water-soluble knedel-like structures:  The preparation of shell-cross-linked small particles // Journal of the American Chemical Society. 1996. V. 118. № 30. P. 7239–7240. https://doi.org/10.1021/ja961299h
  57. Huang H., Kowalewski T., Remsen E.E., et al. Hydrogel-coated glassy nanospheres:  A novel method for the synthesis of shell cross-linked knedels // Journal of the American Chemical Society. 1997. V. 119. № 48. P. 11653–11659. https://doi.org/10.1021/ja9717469
  58. Shuai X., Merdan T., Schaper A.K., et al. Core-cross-linked polymeric micelles as paclitaxel carriers // Bioconjugate Chemistry. 2004. V. 15. № 3. P. 441–448. https://doi.org/10.1021/bc034113u
  59. Matsumoto K., Hirabayashi T., Harada T., Matsuoka H. Synthesis of shell cross-linked block copolymer micelles with poly(p-styrenesulfonic acid) in the micelle core // Macromolecules. 2005. V. 38. № 24. P. 9957–9962. https://doi.org/10.1021/ma0511651
  60. Yang R., Meng F., Ma S., et al. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel // Biomacromolecules. 2011. V. 12. № 8. P. 3047–3055. https://doi.org/10.1021/bm2006856
  61. Yan L., Yang L., He H., et al. Photo-cross-linked mPEG-poly(γ-cinnamyl-L-glutamate) micelles as stable drug carriers // Polymer Chemistry. 2012. V. 3. № 5. P. 1300–1307. https://doi.org/10.1039/C2PY20049J
  62. Piogé S., Nesterenko A., Brotons G., et al. Core cross-linking of dynamic diblock copolymer micelles: Quantitative study of photopolymerization efficiency and ,icelle structure // Macromolecules. 2011. V. 44. № 3. P. 594–603. https://doi.org/10.1021/ma102284y
  63. Yilmaz Z.E., Vanslambrouk S., Cajot S., et al. Core cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers // RSC Advances. 2016. V. 6. № 48. P. 42081–42088. https://doi.org/10.1039/C6RA07422G
  64. Stouten J., Sijstermans N., Babilotte J., et al. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups // Polymer Chemistry. 2022. V. 13. № 33. P. 4832–4847. https://doi.org/10.1039/D2PY00631F
  65. Li J., Guo S., Wang M., et al. Poly(lactic acid)/poly(ethylene glycol) block copolymer based shell or core cross-linked micelles for controlled release of hydrophobic drug // RSC Advances. 2015. V. 5. № 25. P. 19484–19492. https://doi.org/10.1039/C4RA14376K
  66. Murthy K.S., Ma Q., Clark C.G., et al. Fundamental design aspects of amphiphilic shell-crosslinked nanoparticles for controlled release applications // Chemical Communications. 2001. № 8. P. 773–774. https://doi.org/10.1039/b100819f
  67. Zhou Q., Zhang L., Yang T.H., Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy // International Journal of Nanomedicine. 2018. V. 13. P. 2921–2942. https://doi.org/10.2147/IJN.S158696
  68. Wei H., Cheng C., Chang C., et al. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate) // Langmuir. 2008. V. 24. № 9. P. 4564–4570. https://doi.org/10.1021/la703320h
  69. Sάnchez-Bustos E., Cornejo-Bravo J.M., Licea-Claverie A. Core cross-linked star polymers for temperature/pH controlled delivery of 5-fluorouracil // Journal of Chemistry. 2016. V. 2016. P. 4543191. https://doi.org/10.1155/2016/4543191
  70. Bai J., Wang J., Feng Y., et al. Stability-tunable core-crosslinked polymeric micelles based on an imidazole-bearing block polymer for pH-responsive drug delivery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 639. P. 128353. https://doi.org/10.1016/j.colsurfa.2022.128353
  71. Chen J., Ouyang J., Kong J., et al. Photo-cross-linked and pH-sensitive biodegradable micelles for doxorubicin delivery // ACS Applied Materials & Interfaces. 2013. V. 5. № 8. P. 3108–3117. https://doi.org/10.1021/am400017q
  72. Bayram N.N., Ulu G.T., Topuzoğullari M., et al. HER2-targeted, degradable core cross-linked micelles for specific and dual pH-Sensitive DOX release // Macromolecular Bioscience. 2022. V. 22. № 1. P. 2100375. https://doi.org/10.1002/mabi.202100375
  73. Gulfam M., Matini T., Monteiro P.F., et al. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells // Biomaterials Science. 2017. V. 5. № 3. P. 532–550. https://doi.org/10.1039/C6BM00888G
  74. Kumar P., Kim S.-H., Yadav S., et al. Redox-responsive core-cross-linked micelles of miktoarm poly(ethylene oxide)-b-poly(furfuryl methacrylate) for anticancer drug delivery // ACS Applied Materials & Interfaces. 2023. V. 15. № 10. P. 12719–12734. https://doi.org/10.1021/acsami.2c21152
  75. Yadav S., Ramesh K., Reddy O.S., et al. Redox-responsive comparison of diselenide and disulfide core-cross-linked micelles for drug delivery application // Pharmaceutics. 2023. V. 15. № 4. P 1159. https://doi.org/10.3390/pharmaceutics15041159
  76. Biswas D., An S.Y., Li Y., et al. Intracellular delivery of colloidally stable core-cross-linked triblock copolymer micelles with glutathione-responsive enhanced drug release for cancer therapy // Molecular Pharmaceutics. 2017. V. 14. № 8. P. 2518–2528. https://doi.org/10.1021/acs.molpharmaceut.6b01146
  77. Feng Y., Bai J., Du X., Zhao X. Shell-cross-linking of polymeric micelles by Zn coordination for photo- and pH dual-sensitive drug delivery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. V. 666. P. 131369. https://doi.org/10.1016/j.colsurfa.2023.131369
  78. Gardey E., Sobotta F.H., Hoeppener S., et al. Influence of core cross-linking and shell composition of polymeric micelles on immune response and their interaction with human monocytes // Biomacromolecules. 2020. V. 21. № 4. P. 1393–1406. https://doi.org/10.1021/acs.biomac.9b01656
  79. Chen S., Cheng S.-X., Zhuo R.-X. Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery // Macromolecular Bioscience. 2010. V. 11. № 5. P. 576–589. https://doi.org/10.1002/mabi.201000427
  80. Jimaja S., Varlas S., Foster J.C., et al. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(arylisocyanide)s // Polymer Chemistry. 2022. V. 13. № 27. P. 4047–4053. https://doi.org/10.1039/d2py00397j
  81. Anirudhan T.S., Varghese S., Manjusha V. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of paclitaxel and curcumin // International Journal of Biological Macromolecules. 2021. V. 192. P. 950–957. https://doi.org/10.1016/j.ijbiomac.2021.10.061
  82. Guan S., Zhang Q., Bao J., et al. Phosphatidylserine targeting peptide-functionalized pH sensitive mixed micelles for enhanced anti-tumor drug delivery // European Journal of Pharmaceutics and Biopharmaceutics. 2020. V. 147. P. 87–101. https://doi.org/10.1016/j.ejpb.2019.12.012
  83. Patel H.S., Shaikh S.J., Ray D., et al. Formulation, solubilization, and in vitro characterization of quercetin‑incorporated mixed micelles of PEO‑PPO‑PEO block copolymers // Applied Biochemistry and Biotechnology. 2022. V. 194. P. 445–463. https://doi.org/10.1007/s12010-021-03691-w
  84. Stepanova D.A., Pigareva V.A., Berkovich A.K., et al. Ultrasonic film rehydration synthesis of mixed polylactide micelles for enzyme-resistant drug delivery nanovehicles // Polymers. 2022. V. 14. № 19. P. 4013. https://doi.org/10.3390/polym14194013
  85. Gerardos A.M., Balafouti A., Pispas S. Mixed hyperbranched/triblock copolymer micelle assemblies: Physicochemical properties and potential for drug encapsulation // Macromolecular Chemistry and Physics. 2023. V. 224. № 17. P. 2300109. https://doi.org/10.1002/macp.202300109
  86. Alexandridis P., Holzwarth J.F., Hatton T.A. Micellization of poly (ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association // Macromolecules. 1994. V. 27. № 9. P. 2414–2425. https://doi.org/10.1021/ma00087a009
  87. Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments // Macromolecules. 1995. V. 28. № 15. P. 5294–5299. https://doi.org/10.1021/ma00119a019
  88. Zheng P., Liu Y., Chen J., et al. Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery // Chinese Chemical Letters. 2020. V. 31. № 5. P. 1178–1182. https://doi.org/10.1016/j.cclet.2019.12.001
  89. Luo Y.-L., Yuan J.-F., Shi J.-H., Gao Q.-Y. Synthesis and characterization of polyion complex micelles and their controlled release of folic acid // Journal of Colloid and Interface Science. 2010. V. 350. № 1. P. 140–147. https://doi.org/10.1016/j.jcis.2010.06.014
  90. Dufresne M.-H., Elsabahy M., Leroux J.-C. Characterization of polyion complex micelles designed to address the challenges of oligonucleotide delivery // Pharmaceutical Research. 2008. V. 25. P. 2083–2093. https://doi.org/10.1007/s11095-008-9591-6
  91. Zhao J., Liu T., Li Y., et al. Hepatocellular carcinoma epi-immunotherapy with polyion complex micelles co-delivering HDAC8 inhibitor and PD-L1 siRNA // Chemical Engineering Journal. 2025. V. 503. P. 158138. https://doi.org/10.1016/j.cej.2024.158138
  92. Schwiertz D., Angelina J., Zhang H., Barz M. Miktoarm star-polypept(o)ide-based polyion complex micelles for the delivery of large nucleic acids // Biomacromolecules. 2024. V. 25. № 10. P. 6539–6554. https://doi.org/10.1021/acs.biomac.4c00695
  93. Chen P., Yang W., Hong T,. et al. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC // Biomaterials. 2022. V. 288. P. 121748. https://doi.org/10.1016/j.biomaterials.2022.121748
  94. Nakai K., Nishiuchi M., Inoue M., et al. Preparation and characterization of polyion complex micelles with phosphobetaine shells // Langmuir. 2013. V. 29. № 31. P. 9651–9661. https://doi.org/10.1021/la401063b
  95. Pham T.T., Takahashi R., Pham T.D., Yusa S. Stable water-soluble polyion complex micelles composed of oppositely charged diblock copolymers and reinforced by hydrophobic interactions // Chemistry Letters. 2022. V. 51. № 8. P. 877–880. https://doi.org/10.1246/cl.220241
  96. Pham T.T., Pham T.D., Yusa S. Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions // Polymer Journal. 2022. V. 54. № 9. P. 1091–1101. https://doi.org/10.1038/s41428-022-00659-3
  97. Aydinlioglu E., Abdelghani M., Le Fer G., et al. Robust polyion complex vesicles (PICsomes) based on PEO-b-poly(amino acid) copolymers combining electrostatic and hydrophobic interactions: Formation, siRNA loading and intracellular delivery // Macromolecular Chemistry and Physics. 2022. V. 224. № 1. P. 2200306. https://doi.org/10.1002/macp.202200306
  98. Saklani R., Domb A.J. Peptide and protein stereocomplexes // ACS Omega. 2024. V. 9. № 16. P. 17726–17740. https://doi.org/10.1021/acsomega.4c00178
  99. Ikada Y., Jamshidi K., Tsuji H., Hyon, S.-H. Stereocomplex formation between enantiomeric poly(lactides) // Macromolecules. 1987. V. 20. № 4. P. 904–906. https://doi.org/10.1021/ma00170a034
  100. De Santis P., Kovacs A.J. Molecular conformation of poly(S-laictide) // Biopolymers. 1968. V. 6. № 3. P. 209–306. https://doi.org/10.1002/bip.1968.360060305
  101. Okihara T., Tsuji M., Kawaguchi A., et al. Crystal structure of sterocomplex of poly(l-alanine-lactide) and poly(d-lactide) // Journal of Macromolecular Science, Part B. 1991. V. 30. № 1–2. P. 119–140. https://doi.org/10.1080/00222349108245788
  102. Qiu Y., Wei X., Lam J.W.Y., et al. Chiral nanostructures from artificial helical polymers: Recent advances in synthesis, regulation, and functions // ACS Nano. 2025. V. 19. № 1. P. 229–280. https://doi.org/10.1021/acsnano.4c14797
  103. Piao L., Li Y., Zhang H., Jiang J. Stereocomplex micelle loaded with paclitaxel for enhanced therapy of breast cancer in an orthotopic mouse model // Journal of Biomaterials Science, Polymer Edition. 2019. V. 30. № 3. P. 233–246. https://doi.org/10.1080/09205063.2019.1565612
  104. Li W., Fan X., Wang X., et al. Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery // Materials Science and Engineering: C. 2018. V. 91. P. 688–695. https://doi.org/10.1016/j.msec.2018.06.006
  105. Kost B., Brzeziński M., Cieślak M., et al. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers // European Polymer Journal. 2019. V. 120. P. 109271. https://doi.org/10.1016/j.eurpolymj.2019.109271
  106. Niu H., Li J., Cai Q., et al. Molecular stereocomplexation for enhancing the stability of nanoparticles encapsulated in polymeric micelles for magnetic resonance imaging // Langmuir. 2020. V. 36. № 46. P. 13881−13889. https://doi.org/10.1021/acs.langmuir.0c02281
  107. Liu Y., Xu C., Fan X., et al. Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery // Materials Science and Engineering: C. 202. V. 108. P. 110464. https://doi.org/10.1016/j.msec.2019.110464
  108. Desyatskova A.M., Kuznetsova E.V., Puchkova Y.A., et al. Effect of stereocomplex formation between enantiomeric poly(l,l-lactide) and poly(d,d-lactide) blocks on self-organization of amphiphilic poly(lactide)-block-poly(ethylene oxide) copolymers in dilute aqueous solution // Mendeleev Communications. 2023. V. 33. № 1. P. 86–89. https://doi.org/10.1016/j.mencom.2023.01.027
  109. Brizzolara D., Cantow H.-J., Diederichs K., et al. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s // Macromolecules. 1996. V. 29. № 1. P. 191–197. https://doi.org/10.1021/ma951144e
  110. Hu C., Zhang Y., Pang X., Chen X. Poly(lactic acid): Recent stereochemical advances and new materials engineering // Advanced Materials. 2024. V. 37. № 22. P. 2412185. https://doi.org/10.1002/adma.202412185
  111. Rijpkema S.J., Toebes B.J., van Vlaenderen L., et al. Influence of tacticity on the self-assembly of poly(ethylene glycol)-b-poly(lactic acid) block copolymers// ACS Macro Letters. 2025. V. 14. № 1. P. 101–106. https://doi.org/10.1021/acsmacrolett.4c00758
  112. Shapira-Furman T., Domb A.J. Insulin extended release from PLA-PEG stereocomplex nanoparticles // Macromolecular Bioscience. 2023. V. 24. № 5. P. 2300497. https://doi.org/10.1002/mabi.202300497
  113. Ohya Y., Yoshida Y., Kumagae T., Kuzuya A. Gelation upon the mixing of amphiphilic graft and triblock copolymers containing enantiomeric polylactide segments through stereocomplex formation // Gels. 2024. V. 10. № 2. P. 139. https://doi.org/10.3390/gels10020139
  114. Фомина Ю.С., Семкина А.С., Загоскин Ю.Д., Алексанян М.М., Чвалун С.Н., Григорьев Т.Е. Биосовместимые гидрогели на основе биоразлагаемых полиэфиров и их сополимеров // Коллоидный журнал. 2023. Т. 85. № 5. С. 682–704. https://doi.org/10.31857/S0023291223600554
  115. Fan X., Li Z., Loh X.J. Recent development of unimolecular micelles as functional materials and applications // Polymer Chemistry. 2016. V. 7. № 38. P. 5898–5919. https://doi.org/10.1039/C6PY01006G
  116. Yang D.-P., Oo M.N.N.L., Deen G.R., et al. Nano-star-shaped polymers for drug delivery applications // Molecular Rapid Communications. 2017. V. 38. № 21. P. 1700410. https://doi.org/10.1002/marc.201700410
  117. Liu W., Li J., Qin Z., et al. Zwitterionic unimolecular micelles with pH and temperature response: Enhanced in vivo circulation stability and tumor therapeutic efficiency // Langmuir. 2020. V. 36. № 13. P. 3356–3366. https://doi.org/10.1021/acs.langmuir.0c00206
  118. Liu F., Wang D., Zhang M., et al. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery // Acta Biomaterialia. 2022. V. 144. P. 15–31. https://doi.org/10.1016/j.actbio.2022.03.028
  119. Liu F., Wang J., Qin Y., et al. One-pot synthesis of enzyme and GSH dual-responsive zwitterionic copolymers with cross-linked shells for enhanced anticancer drug delivery // ACS Applied Polymer Materials. 2025. V. 7. № 3. P. 2061–2072. https://doi.org/10.1021/acsapm.4c03864
  120. Tondock F., Nash D., Hudziak C., et al. Design and synthesis of amphiphilic statistical copolymers forming unimeric micelles with thermoresponsive behaviour in the physiological range // Polymer Chemistry. 2025. V. 16. № 19. P. 2216–2231. https://doi.org/10.1039/D4PY01450B
  121. Pathan S., Jayakannan M. Tweaking unimolecular micellar nanoarchitecture for drug delivery in tumor xenograft mice models // Small. 2025. V. 21. № 31. P. 2503155. https://doi.org/10.1002/smll.202503155
  122. Gomzyak V.I., Sedush N.G., Puchkov A.A., et al. Linear and branched lactide polymers for targeted drug delivery systems // Polymer Science, Series B. 2021. V. 63. № 3. P. 257–271. https://doi.org/10.1134/S1560090421030064
  123. Puchkov A.A., Sedush N.G., Buzin A.I., et al. Synthesis and characterization of well-defined star-shaped poly(L-lactides) // Polymer. 2023. V. 264. P. 125573. https://doi.org/10.1016/j.polymer.2022.125573
  124. Fox M.E., Szoka F.C., Frechet J.M.J. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture // Accounts of Chemical Research. 2009. V. 42. № 8. P. 1141–1151. https://doi.org/10.1021/ar900035f
  125. Gillies E.R., Frechet J.M.J. Designing macromolecules for therapeutic applications:  Polyester dendrimer – poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture // Journal of the American Chemical Society. 2002. V. 124. № 47. P. 14137–14146. https://doi.org/10.1021/ja028100n
  126. Gillies E.R., Dy E., Frechet J.M.J., Szoka F.C. Biological evaluation of polyester dendrimer: Poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture // Molecular Pharmaceutics. 2005. V. 2. № 2. P. 129–138. https://doi.org/10.1021/mp049886u
  127. Phan Q.T., Rabanel J.-M., Mekhjian D., et al. Core–shell bottlebrush polymers: Unmatched delivery of small active compounds deep into tissues // Small. 2024. V. 21. № 5. P. 2408616. https://doi.org/10.1002/smll.202408616

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).