FEATURES OF THE DOUBLE ELECTRIC LAYER AROUND SPHERICAL PARTICLES. THE POISSON-HELMHOLTZ-BOLTZMANN MODEL
- Authors: Dolinyi A.I1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 656–668
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376453
- DOI: https://doi.org/10.7868/S3034543X25060068
- ID: 376453
Cite item
Abstract
The Poisson- Helmholtz- Boltzmann model is used to study the properties of a double electric layer formed near a single weakly charged spherical particle surrounded by a 1:1 electrolyte solution. Dividing into Coulomb and non- Coulomb (defined by the Yukawa potential) interactions between ions in solution, as well as between ions and a particle, we obtain mathematical expressions for the profiles of the corresponding potentials near the particle as a function of the main parameters of the model. When varying the values of key parameters, we find both monotonic and nonmonotonic profiles of the electrostatic potential, and we observe a change in the sign of the potential, resulting in the phenomena of inversion and reversal of charge. The conditions under which the inversion and reversal of the sign of the particle potential occur are determined. The dependence of the zero charge potential on the particle size, the concentration of a monovalent electrolyte solution, and the surface density of a non- Coulomb force source is considered.
About the authors
A. I Dolinyi
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: dolinyi@mail.ru
Moscow, Russia
References
- Verwey E.J.W. Overbeek J.Th.G. Theory of the Stability of Lyophobic Colloids. NY: Elsevier, 1948.
- Делахей П. Двойной слой и кинетика электродных процессов. М.: Мир, 1967.
- Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985.
- Lyklema J. Fundamentals of Interface and Colloid Science. San Diego: Elsevier Academic Press, 2005. Vol. 2. Chapter 3.
- Markovich T., Andelman D., Podgornik R. Charged membranes: Poisson-Boltzmann theory. The DLVO paradigm, and beyond. In: Handbook of Lipid Membranes. Molecular, Functional, and Materials Aspects. Eds. by Safinya C.R., Radler J.O. CRC Press. 2021.
- Israelashvili J.N. Intermolecular and Surface Forces. Third edition. Amsterdam: Elsevier, 2011.
- Wu J. Understanding the electric double-layer structure, capacitance, and charging dynamics // Chem. Rev. 2022. V. 122. N: 12. P. 10821-10859. https://doi.org/10.1021/acs.chemrev.2c00097
- Fleischmann S., Mitchell J.B., Wang R., Zhan Ch., Jiang D., Presser V., Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials // Chem. Rev. 2020. V. 120. N: 14. P. 6738-6782. https://doi.org/10.1021/acs.chemrev.0c00170
- Henrique F., Zuk P.J., Gupta A. Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size // Soft Matter. 2022. V. 18. N: 1. P. 198-213. https://doi.org/10.1039/D1SM01239H
- Rajan A.G., Martinez J.M.P., Carter E.A. Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? // ACS Catalysis. 2020. V. 10. N: 19. P. 11177-11234. https://doi.org/10.1021/acscatal.0c01862
- Biesheuvel P., Bazant M. Nonlinear dynamics of capacitive charging and desalination by porous electrodes // Phys. Rev. E. 2010. V. 81. N: 3. P. 031502. https://doi.org/10.1103/PhysRevE.81.031502
- Levin Y. Electrostatic correlations: from plasma to biology // Rep. Prog. Phys. 2002. V. 65. N: 11. P. 1577-1632. https://doi.org/10.1088/0034-4885/65/11/201
- Grosberg A.Y., Nguyen T.T., Shklovskii B I. Colloquium: The physics of charge inversion in chemical and biological systems // Rev. Modern Phys. 2002. V. 74. N: 2. P. 329-345. https://doi.org/10.1103/RevModPhys.74.329
- Quezada-Perez M., Gonzalez-Tovar E., Martin-Molina A., Lozada-Cassou M., Hidalgo-Alvarez R. Overcharging in colloids: beyond the Poisson-Boltzmann approach // ChemPhysChem. 2003. V. 4. N: 3. P. 234-248. https://doi.org/10.1002/cphc.200390040
- Lyklema J. Overcharging, charge reversal: Chemistry or physics? // Colloids Surf. A 2006. V. 291. N: 1-3. P. 3-12. https://doi.org/10.1016/j.colsurfa.2006.06.043
- Strauss U.P., Gershfeld N.L., Spiera H. Charge reversal of cationic poly-4-vinylpyridine derivatives in KBr solutions // J. Am. Chem. Soc. 1954. V. 76. N: 23. P. 5909-5911. https://doi.org/10.1021/ja01652a004
- Elimelech M., O'Melia C.R. Kinetics of deposition of colloidal particles in porous media // Environ. Sci. Technol. 1990. V. 24. N: 10. P. 1528-1536. https://doi.org/10.1021/es00080a012
- Martin-Molina A., Quezada-Perez M., Galisteo-Gonzalez F., Hidalgo-Alvarez R. Looking into overcharging in model colloids through electrophoresis: Asymmetric electrolytes // J. Chem. Phys. 2003. V. 118. N: 9. P. 4183-4189. https://doi.org/10.1063/1.1540631
- Quesada-Perez M., Gonzalez-Tovar E., Martin-Molina A., Lozada-Cassou M., Hidalgo-Alvarez R. Ion size correlations and charge reversal in real colloids // Colloids Surf. A 2005. V. 267. N: 1-3. P. 24-30. https://doi.org/10.1016/j.colsurfa.2005.06.034
- Besteman K., Zevenbergen M.A.G., Heering H.A., Lemay S.G. Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon // Phys. Rev. Lett. 2004. V. 93. N: 17. P. 170802. https://doi.org/10.1103/PhysRevLett.93.170802
- Besteman K., Zevenbergen M.A.G., Lemay S. Charge inversion by multivalent ions: Dependence on dielectric constant and surface-charge density // Phys. Rev. E. 2005. V. 72. N6. P. 061501. https://doi.org/10.1103/PhysRevE.72.061501
- Besteman K., van Eijk K., Lemay S.G. Charge inversion accompanies DNA condensation by multivalent ions // Nat. Phys. 2007. V. 3. P. 641-644. https://doi.org/10.1038/nphys697
- Vaknin D., Krüger P., Lösche M. Anomalous X-ray reflectivity characterization of ion distribution at biomimetic membranes // Phys. Rev. Lett. 2003. V. 90. N6. P. 178102. https://doi.org/10.1103/PhysRevLett.90.178102
- Pittler J., Bu W., Vaknin D., Travesset A., McGillivray D.J., Lösche M. Charge inversion at minute electrolyte concentrations // Phys. Rev. Lett. 2006. V. 97. N6. P. 046102. https://doi.org/10.1103/PhysRevLett.97.046102
- Radeva T. Physical Chemistry of Polyelectrolytes. NY: Marcel Dekker, 2001.
- Ladam G., Schaad P., Voegel J.C., Schaaf P., Decher G., Cuisinier F. In situ determination of the structural properties of initially deposited polyelectrolyte multilayers // Langmuir 2000. V. 16. N6. P. 1249-1255. https://doi.org/10.1021/la990650k
- Paton-Morales P., Talens-Alesson F.I. Effect of competitive adsorption of Zn2+ on the flocculation of Lauryl Sulfate micelles by Al3+ // Langmuir 2002. V. 18. N6. P. 8295-8301. https://doi.org/10.1021/la0200820
- Gelbart W.M., Bruinsma R.F., Pincus P.A., Parsegian V.A. DNA-inspired electrostatics // Phys. Today 2000. V. 53. N6. P. 38-44. https://doi.org/10.1063/1.1325230
- Attard P. Ion condensation in the electric double layer and the corresponding Poisson-Boltzmann effective surface charge // J. Phys. Chem. 1995. V. 99. N6. P. 14174-14181. https://doi.org/10.1021/j100038a060
- Tanaka V., Grosberg A.Y. Giant charge inversion of a macroion due to multivalent counterions and monovalent coions: Molecular dynamics study // J. Chem. Phys. 2001. V. 115. N6. P. 567-574. https://doi.org/10.1063/1.1377033
- Terao T., Nakayama T. Charge inversion of colloidal particles in an aqueous solution: Screening by multivalent ions // Phys. Rev. E. 2001. V. 63. N6. P. 041401. https://doi.org/10.1103/PhysRevE.63.041401
- Jimenez-Angeles F., Lozada-Cassou M. A Model macroion solution next to a charged wall: overcharging, charge reversal, and charge inversion by macroions // J. Phys. Chem. B 2004. V. 108. N6. P. 7286-7296. https://doi.org/10.1021/jp036464b
- Semenov I., Raafatnia S., Sega M., Lobaskin V., Holm C., Kremer F. Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations // Phys. Rev. E. 2013. V. 87. N6. P. 022302. https://doi.org/10.1103/PhysRevE.87.022302.
- Nguyen T. T., Grosberg A. Y., Shklovskii B. I. Macroions in salty water with multivalent ions: Giant inversion of charge // Phys. Rev. Lett. 2000. V. 85. N6. P. 1568-1571. https://doi.org/10.1103/PhysRevLett.85.1568
- Kjellander R. Ion-ion correlations and effective charges in electrolyte and macroion systems // Ber. Bunsenges. Phys. Chem. 1996. V. 100. N6. P. 894-904. https://doi.org/10.1002/bbpc.19961000635
- Lozada-Cassou M., Saavedra-Barrera R., Henderson D. The application of the hypernetted chain approximation to the electrical double layer: Comparison with Monte Carlo results for symmetric salts // J. Chem. Phys. 1982. V. 77. N6. P. 5150-5156. https://doi.org/10.1063/1.443691
- González-Tovar E., Lozada-Cassou M. The spherical double layer: A hypernetted chain mean spherical approximation calculation for a model spherical colloid particle // J. Phys. Chem. 1989. V. 93. N6. P. 3761-3768. https://doi.org/10.1021/j100346a076
- Torrie G.M., Valleau J.P. Electrical double layers. 4. Limitations of the Gouy-Chapman theory // J. Phys. Chem. 1982. V. 86. N6. P. 3251-3257. https://doi.org/10.1021/j100213a035
- Das T., Bratko D., Bhuiyan L.B., Outhwaite C.W. Polyelectrolyte solutions containing mixed valency ions in the cell model: A simulation and modified Poisson-Boltzmann study // J. Chem. Phys. 1997. V. 107. N. 21. P. 9197-9207. https://doi.org/10.1063/1.475211
- Vlachy V. Ionic effects beyond Poisson-Boltzmann theory // Annu. Rev. Phys. Chem. 1999. V. 50. P. 145-165. https://doi.org/10.1146/annurev.physchem.50.1.145
- Li Z., Wu J. Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures // Phys. Rev. E. 2004. V. 70. N. 3. P. 031109. https://doi.org/10.1103/PhysRevE.70.031109
- Henderson D., Lamperski S., Jin Z., Wu J. Density functional study of the electric double layer formed by a high density electrolyte // J. Phys. Chem. B 2011. V. 115. N. 44. P. 12911-12914. https://doi.org/10.1021/jp2078105
- Lee J.W., Nilson R.H., Templeton J.A., Griffiths S.K., Kung A., Wong B.M. Comparison of molecular dynamics with classical density functional and Poisson-Boltzmann theories of the electric double layer in nanochannels // J. Chem. Theory Comput. 2012. V. 8. N. 6. P. 2012-2022. https://doi.org/10.1021/ct3001156
- Jimenez-Angeles F., Lozada-Cassou M. On the regimes of charge reversal // J. Chem. Phys. 2008. V. 128. N. 17. P. 174701. https://doi.org/10.1063/1.2911923
- Torrie G.M., Valleau J.P. Electrical double layers. I. Monte Carlo study of a uniformly charged surface // J. Chem. Phys. 1980. V. 73. N. 11. P. 5807-5816. https://doi.org/10.1063/1.440065
- Valleau J.P., Torrie G.M. The electrical double layer. V. Asymmetric ion-wall interactions // J. Chem. Phys. 1984. V. 81. N. 12. P. 6291-6296. https://doi.org/10.1063/1.447535
- Henderson D., Boda D. Insights from theory and simulation on the electrical double layer // Phys. Chem. Chem. Phys. 2009. V. 11. N. 20. P. 3822-3830. https://doi.org/10.1039/B815946G
- Boda D., Fawcett W. R., Henderson D., Sokolowski S. Monte Carlo, density functional theory, and Poisson-Boltzmann theory study of the structure of an electrolyte near an electrode // J. Chem. Phys. 2002. V. 116. N. 16. P. 7170-7176. https://doi.org/10.1063/1.1464826
- Martin-Molina A., Maroto-Centeno J.A., Hidalgo-Alvarez R., Quesada-Perez M. Charge reversal in real colloids: Experiments, theory and simulations // Colloids Surf. A 2008. V. 319. N. 1-3. P. 103-108. https://doi.org/10.1016/j.colsurfa.2007.09.041
- Crozier P.S., Rowley R.L., Henderson D. Molecular dynamics simulations of ion size effects on the fluid structure of aqueous electrolyte systems between charged model electrodes // J. Chem. Phys. 2001. V. 114. N. 17. P. 7513-7517. https://doi.org/10.1063/1.1362290
- Messina R., Gonzalez-Tovar E., Lozada-Cassou M., Holm C. Overcharging: The crucial role of excluded volume // Europhys. Lett. 2002. V. 60. N. 3. P. 383-389. https://doi.org/10.1209/epl/i2002-00275-y
- Kubičková A., Křížek T., Coufal P., Vazdar M., Wernersson E., Heyda J., Jungwirth P. Overcharging in biological systems: Reversal of electrophoretic mobility of aqueous polysaptrate by multivalent cations // Phys. Rev. Lett. 2012. V. 108. N. 18. P. 186101. https://doi.org/10.1103/PhysRevLett.108.186101
- Bazant M.Z., Storey B.D., Kornyshev A.A. Double layer in ionic liquids: Overscreening versus crowding // Phys. Rev. Lett. 2011. V. 106. N. 4. P. 046102. https://doi.org/10.1103/PhysRevLett.106.046102
- Storey B.D., Bazant M.Z. Effects of electrostatic correlations on electrokinetic phenomena // Phys. Rev. E. 2012. V. 86. N. 5. P. 056303. https://doi.org/10.1103/PhysRevE.86.056303
- de Souza J.P., Bazant M.Z. Continuum theory of electrostatic correlations at changed surfaces // J. Phys. Chem. C 2020. V. 124. N. 21. P. 11414-11421. https://doi.org/10.1021/acs.jpcc.0c01261
- Parsons D.F., Ninham B.W. Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration // Colloids Surf. A. 2011. V. 383. № 1-3. P. 2-9. https://doi.org/10.1016/j.colsurfa.2010.12.025
- Parsons D.F., Ninham B.W. Charge reversal of surfaces in divalent electrolytes: The role of ionic dispersion interactions // Langmuir 2010. V. 26. № 9. P. 6430-6436. https://doi.org/10.1021/la9041265
- Tavares F.W., Bostrom M., Lima E.R.A., Biscaia E.C.Jr. Ion-specific thermodynamic properties of colloids and proteins // Fluid Phase Equilibria 2010. V. 296. № 2. P. 99-105. https://doi.org/10.1016/j.fluid.2010.02.031
- Bohinc K., Shrestha A., May S. The Poisson-Helmholtz-Boltzmann model // Eur. Phys. J. E 2011. V. 34. № 10. P. 108. https://doi.org/10.1140/epjc/i2011-11108-6
- Bohinc K., Shrestha A., Brumen M., May S. Poisson-Helmholtz-Boltzmann model of the electric double layer: Analysis of monovalent ionic mixtures // Phys. Rev. E. 2012. V. 85. № 3. P. 031130. https://doi.org/10.1103/PhysRevE.85.031130
- Zhao H. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance // Phys. Rev. E. 2012. V. 86. № 5. P. 051502. https://doi.org/10.1103/PhysRevE.86.051502
- Brown M.A., Bossa G.V., May S. Emergence of a Stern layer from the incorporation of hydration interactions into the Gouy-Chapman model of the electrical double layer // Langmuir 2015. V. 31. № 42. P. 11477-11483. https://doi.org/10.1021/acs.langmuir.5b02389
- Goswami P., Dhar J., Ghosh U., Chakraborty S. Solvent-mediated non-electrostatic ion-ion interactions predicting anomalies in electrophoresis // Electrophoresis 2014. V. 38. № 5. P. 712-719. https://doi.org/10.1002/elps.201600394
- Berntson B.K., Downing R., Bossa G.V., May S. Debye-Hückel theory of weakly curved macroions: Implementing ion specificity through a composite Coulomb-Yukawa interaction potential // Phys. Rev. E. 2018. V. 98. № 2. P. 022609. https://doi.org/10.1103/PhysRevE.98.022609
- Brown M.A., Abbas Z., Kleibert A., Green R.G., Goel A., May S., Squires T.M. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface // Phys. Rev. X. 2016. V. 6. № 1. P. 011007. https://doi.org/10.1103/PhysRevX.6.011007
- Spaight J., Downing R., May S., de Carvalho S.J., Bossa G.V. Modeling hydration-mediated ion-ion interactions in electrolytes through oscillating Yukawa potentials // Phys. Rev. E. 2020. V. 101. № 5. P. 052603. https://doi.org/10.1103/PhysRevE.101.052603
- Caetano D.L.Z., Bossa G.V., de Oliveira V.M., Brown M.A., de Carvalho S.J., May S. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations // Phys. Chem. Chem. Phys. 2017. V. 19. № 35. P. 23971-23981. https://doi.org/10.1039/C7CP04672C
- Valleau J.P., Torrie G.M. The electrical double layer. III. Modified Gouy-Chapman theory with unequal ion sizes // J. Chem. Phys. 1982. V. 76. № 9. P. 4623-4630. https://doi.org/10.1063/1.443542
- Bhuiyan L.B., Blum L., Henderson D. The application of the modified Gouy-Chapman theory to an electrical double layer containing asymmetric ions // J. Chem. Phys. 1983. V. 78. № 1. P. 442-445. https://doi.org/10.1063/1.444523
- Valiskó M., Henderson D., Boda D. Competition between the effects of asymmetries in ion diameters and charges in an electrical double layer studied by Monte Carlo simulations and theories // J. Phys. Chem. B 2004. V. 108. № 42. P. 16548-16555. https://doi.org/10.1021/jp0473873
Supplementary files


