ОСОБЕННОСТИ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ ВОКРУГ СФЕРИЧЕСКИХ ЧАСТИЦ. МОДЕЛЬ ПУАССОНА–ГЕЛЬМГОЛЬЦА–БОЛЬЦМАННА
- Авторы: Долинный А.И.1
-
Учреждения:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Выпуск: Том 87, № 6 (2025)
- Страницы: 656–668
- Раздел: Статьи
- Статья получена: 27.01.2026
- Статья опубликована: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376453
- DOI: https://doi.org/10.7868/S3034543X25060068
- ID: 376453
Цитировать
Аннотация
Модель Пуассона–Гельмгольца–Больцмана использована для исследования свойств двойного электрического слоя, формирующегося вблизи одиночной слабозаряженной сферической частицы, окруженной раствором 1:1 электролита. Разделяя на кулоновские и некулоновские (задаваемые потенциалом Юкавы) взаимодействия между ионами в растворе, а также между ионами и частицей, получены математические выражения для профилей соответствующих потенциалов вблизи частицы в функции основных параметров модели. При варьировании значений ключевых параметров найдены как монотонные, так и немонотонные профили электростатического потенциала, наблюдается смена знака потенциала, вследствие чего возникают явления инверсии и обращения заряда. Определены условия, при которых наступают инверсия и обращение знака потенциала частицы. Рассмотрена зависимость потенциала нулевого заряда от размера частиц, концентрации раствора одновалентного электролита и поверхностной плотности источника некулоновских сил.
Об авторах
А. И. Долинный
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: dolinyi@mail.ru
Москва, Россия
Список литературы
- Verwey E.J.W. Overbeek J.Th.G. Theory of the Stability of Lyophobic Colloids. NY: Elsevier, 1948.
- Делахей П. Двойной слой и кинетика электродных процессов. М.: Мир, 1967.
- Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985.
- Lyklema J. Fundamentals of Interface and Colloid Science. San Diego: Elsevier Academic Press, 2005. Vol. 2. Chapter 3.
- Markovich T., Andelman D., Podgornik R. Charged membranes: Poisson-Boltzmann theory. The DLVO paradigm, and beyond. In: Handbook of Lipid Membranes. Molecular, Functional, and Materials Aspects. Eds. by Safinya C.R., Radler J.O. CRC Press. 2021.
- Israelashvili J.N. Intermolecular and Surface Forces. Third edition. Amsterdam: Elsevier, 2011.
- Wu J. Understanding the electric double-layer structure, capacitance, and charging dynamics // Chem. Rev. 2022. V. 122. N: 12. P. 10821-10859. https://doi.org/10.1021/acs.chemrev.2c00097
- Fleischmann S., Mitchell J.B., Wang R., Zhan Ch., Jiang D., Presser V., Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials // Chem. Rev. 2020. V. 120. N: 14. P. 6738-6782. https://doi.org/10.1021/acs.chemrev.0c00170
- Henrique F., Zuk P.J., Gupta A. Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size // Soft Matter. 2022. V. 18. N: 1. P. 198-213. https://doi.org/10.1039/D1SM01239H
- Rajan A.G., Martinez J.M.P., Carter E.A. Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? // ACS Catalysis. 2020. V. 10. N: 19. P. 11177-11234. https://doi.org/10.1021/acscatal.0c01862
- Biesheuvel P., Bazant M. Nonlinear dynamics of capacitive charging and desalination by porous electrodes // Phys. Rev. E. 2010. V. 81. N: 3. P. 031502. https://doi.org/10.1103/PhysRevE.81.031502
- Levin Y. Electrostatic correlations: from plasma to biology // Rep. Prog. Phys. 2002. V. 65. N: 11. P. 1577-1632. https://doi.org/10.1088/0034-4885/65/11/201
- Grosberg A.Y., Nguyen T.T., Shklovskii B I. Colloquium: The physics of charge inversion in chemical and biological systems // Rev. Modern Phys. 2002. V. 74. N: 2. P. 329-345. https://doi.org/10.1103/RevModPhys.74.329
- Quezada-Perez M., Gonzalez-Tovar E., Martin-Molina A., Lozada-Cassou M., Hidalgo-Alvarez R. Overcharging in colloids: beyond the Poisson-Boltzmann approach // ChemPhysChem. 2003. V. 4. N: 3. P. 234-248. https://doi.org/10.1002/cphc.200390040
- Lyklema J. Overcharging, charge reversal: Chemistry or physics? // Colloids Surf. A 2006. V. 291. N: 1-3. P. 3-12. https://doi.org/10.1016/j.colsurfa.2006.06.043
- Strauss U.P., Gershfeld N.L., Spiera H. Charge reversal of cationic poly-4-vinylpyridine derivatives in KBr solutions // J. Am. Chem. Soc. 1954. V. 76. N: 23. P. 5909-5911. https://doi.org/10.1021/ja01652a004
- Elimelech M., O'Melia C.R. Kinetics of deposition of colloidal particles in porous media // Environ. Sci. Technol. 1990. V. 24. N: 10. P. 1528-1536. https://doi.org/10.1021/es00080a012
- Martin-Molina A., Quezada-Perez M., Galisteo-Gonzalez F., Hidalgo-Alvarez R. Looking into overcharging in model colloids through electrophoresis: Asymmetric electrolytes // J. Chem. Phys. 2003. V. 118. N: 9. P. 4183-4189. https://doi.org/10.1063/1.1540631
- Quesada-Perez M., Gonzalez-Tovar E., Martin-Molina A., Lozada-Cassou M., Hidalgo-Alvarez R. Ion size correlations and charge reversal in real colloids // Colloids Surf. A 2005. V. 267. N: 1-3. P. 24-30. https://doi.org/10.1016/j.colsurfa.2005.06.034
- Besteman K., Zevenbergen M.A.G., Heering H.A., Lemay S.G. Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon // Phys. Rev. Lett. 2004. V. 93. N: 17. P. 170802. https://doi.org/10.1103/PhysRevLett.93.170802
- Besteman K., Zevenbergen M.A.G., Lemay S. Charge inversion by multivalent ions: Dependence on dielectric constant and surface-charge density // Phys. Rev. E. 2005. V. 72. N6. P. 061501. https://doi.org/10.1103/PhysRevE.72.061501
- Besteman K., van Eijk K., Lemay S.G. Charge inversion accompanies DNA condensation by multivalent ions // Nat. Phys. 2007. V. 3. P. 641-644. https://doi.org/10.1038/nphys697
- Vaknin D., Krüger P., Lösche M. Anomalous X-ray reflectivity characterization of ion distribution at biomimetic membranes // Phys. Rev. Lett. 2003. V. 90. N6. P. 178102. https://doi.org/10.1103/PhysRevLett.90.178102
- Pittler J., Bu W., Vaknin D., Travesset A., McGillivray D.J., Lösche M. Charge inversion at minute electrolyte concentrations // Phys. Rev. Lett. 2006. V. 97. N6. P. 046102. https://doi.org/10.1103/PhysRevLett.97.046102
- Radeva T. Physical Chemistry of Polyelectrolytes. NY: Marcel Dekker, 2001.
- Ladam G., Schaad P., Voegel J.C., Schaaf P., Decher G., Cuisinier F. In situ determination of the structural properties of initially deposited polyelectrolyte multilayers // Langmuir 2000. V. 16. N6. P. 1249-1255. https://doi.org/10.1021/la990650k
- Paton-Morales P., Talens-Alesson F.I. Effect of competitive adsorption of Zn2+ on the flocculation of Lauryl Sulfate micelles by Al3+ // Langmuir 2002. V. 18. N6. P. 8295-8301. https://doi.org/10.1021/la0200820
- Gelbart W.M., Bruinsma R.F., Pincus P.A., Parsegian V.A. DNA-inspired electrostatics // Phys. Today 2000. V. 53. N6. P. 38-44. https://doi.org/10.1063/1.1325230
- Attard P. Ion condensation in the electric double layer and the corresponding Poisson-Boltzmann effective surface charge // J. Phys. Chem. 1995. V. 99. N6. P. 14174-14181. https://doi.org/10.1021/j100038a060
- Tanaka V., Grosberg A.Y. Giant charge inversion of a macroion due to multivalent counterions and monovalent coions: Molecular dynamics study // J. Chem. Phys. 2001. V. 115. N6. P. 567-574. https://doi.org/10.1063/1.1377033
- Terao T., Nakayama T. Charge inversion of colloidal particles in an aqueous solution: Screening by multivalent ions // Phys. Rev. E. 2001. V. 63. N6. P. 041401. https://doi.org/10.1103/PhysRevE.63.041401
- Jimenez-Angeles F., Lozada-Cassou M. A Model macroion solution next to a charged wall: overcharging, charge reversal, and charge inversion by macroions // J. Phys. Chem. B 2004. V. 108. N6. P. 7286-7296. https://doi.org/10.1021/jp036464b
- Semenov I., Raafatnia S., Sega M., Lobaskin V., Holm C., Kremer F. Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations // Phys. Rev. E. 2013. V. 87. N6. P. 022302. https://doi.org/10.1103/PhysRevE.87.022302.
- Nguyen T. T., Grosberg A. Y., Shklovskii B. I. Macroions in salty water with multivalent ions: Giant inversion of charge // Phys. Rev. Lett. 2000. V. 85. N6. P. 1568-1571. https://doi.org/10.1103/PhysRevLett.85.1568
- Kjellander R. Ion-ion correlations and effective charges in electrolyte and macroion systems // Ber. Bunsenges. Phys. Chem. 1996. V. 100. N6. P. 894-904. https://doi.org/10.1002/bbpc.19961000635
- Lozada-Cassou M., Saavedra-Barrera R., Henderson D. The application of the hypernetted chain approximation to the electrical double layer: Comparison with Monte Carlo results for symmetric salts // J. Chem. Phys. 1982. V. 77. N6. P. 5150-5156. https://doi.org/10.1063/1.443691
- González-Tovar E., Lozada-Cassou M. The spherical double layer: A hypernetted chain mean spherical approximation calculation for a model spherical colloid particle // J. Phys. Chem. 1989. V. 93. N6. P. 3761-3768. https://doi.org/10.1021/j100346a076
- Torrie G.M., Valleau J.P. Electrical double layers. 4. Limitations of the Gouy-Chapman theory // J. Phys. Chem. 1982. V. 86. N6. P. 3251-3257. https://doi.org/10.1021/j100213a035
- Das T., Bratko D., Bhuiyan L.B., Outhwaite C.W. Polyelectrolyte solutions containing mixed valency ions in the cell model: A simulation and modified Poisson-Boltzmann study // J. Chem. Phys. 1997. V. 107. N. 21. P. 9197-9207. https://doi.org/10.1063/1.475211
- Vlachy V. Ionic effects beyond Poisson-Boltzmann theory // Annu. Rev. Phys. Chem. 1999. V. 50. P. 145-165. https://doi.org/10.1146/annurev.physchem.50.1.145
- Li Z., Wu J. Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures // Phys. Rev. E. 2004. V. 70. N. 3. P. 031109. https://doi.org/10.1103/PhysRevE.70.031109
- Henderson D., Lamperski S., Jin Z., Wu J. Density functional study of the electric double layer formed by a high density electrolyte // J. Phys. Chem. B 2011. V. 115. N. 44. P. 12911-12914. https://doi.org/10.1021/jp2078105
- Lee J.W., Nilson R.H., Templeton J.A., Griffiths S.K., Kung A., Wong B.M. Comparison of molecular dynamics with classical density functional and Poisson-Boltzmann theories of the electric double layer in nanochannels // J. Chem. Theory Comput. 2012. V. 8. N. 6. P. 2012-2022. https://doi.org/10.1021/ct3001156
- Jimenez-Angeles F., Lozada-Cassou M. On the regimes of charge reversal // J. Chem. Phys. 2008. V. 128. N. 17. P. 174701. https://doi.org/10.1063/1.2911923
- Torrie G.M., Valleau J.P. Electrical double layers. I. Monte Carlo study of a uniformly charged surface // J. Chem. Phys. 1980. V. 73. N. 11. P. 5807-5816. https://doi.org/10.1063/1.440065
- Valleau J.P., Torrie G.M. The electrical double layer. V. Asymmetric ion-wall interactions // J. Chem. Phys. 1984. V. 81. N. 12. P. 6291-6296. https://doi.org/10.1063/1.447535
- Henderson D., Boda D. Insights from theory and simulation on the electrical double layer // Phys. Chem. Chem. Phys. 2009. V. 11. N. 20. P. 3822-3830. https://doi.org/10.1039/B815946G
- Boda D., Fawcett W. R., Henderson D., Sokolowski S. Monte Carlo, density functional theory, and Poisson-Boltzmann theory study of the structure of an electrolyte near an electrode // J. Chem. Phys. 2002. V. 116. N. 16. P. 7170-7176. https://doi.org/10.1063/1.1464826
- Martin-Molina A., Maroto-Centeno J.A., Hidalgo-Alvarez R., Quesada-Perez M. Charge reversal in real colloids: Experiments, theory and simulations // Colloids Surf. A 2008. V. 319. N. 1-3. P. 103-108. https://doi.org/10.1016/j.colsurfa.2007.09.041
- Crozier P.S., Rowley R.L., Henderson D. Molecular dynamics simulations of ion size effects on the fluid structure of aqueous electrolyte systems between charged model electrodes // J. Chem. Phys. 2001. V. 114. N. 17. P. 7513-7517. https://doi.org/10.1063/1.1362290
- Messina R., Gonzalez-Tovar E., Lozada-Cassou M., Holm C. Overcharging: The crucial role of excluded volume // Europhys. Lett. 2002. V. 60. N. 3. P. 383-389. https://doi.org/10.1209/epl/i2002-00275-y
- Kubičková A., Křížek T., Coufal P., Vazdar M., Wernersson E., Heyda J., Jungwirth P. Overcharging in biological systems: Reversal of electrophoretic mobility of aqueous polysaptrate by multivalent cations // Phys. Rev. Lett. 2012. V. 108. N. 18. P. 186101. https://doi.org/10.1103/PhysRevLett.108.186101
- Bazant M.Z., Storey B.D., Kornyshev A.A. Double layer in ionic liquids: Overscreening versus crowding // Phys. Rev. Lett. 2011. V. 106. N. 4. P. 046102. https://doi.org/10.1103/PhysRevLett.106.046102
- Storey B.D., Bazant M.Z. Effects of electrostatic correlations on electrokinetic phenomena // Phys. Rev. E. 2012. V. 86. N. 5. P. 056303. https://doi.org/10.1103/PhysRevE.86.056303
- de Souza J.P., Bazant M.Z. Continuum theory of electrostatic correlations at changed surfaces // J. Phys. Chem. C 2020. V. 124. N. 21. P. 11414-11421. https://doi.org/10.1021/acs.jpcc.0c01261
- Parsons D.F., Ninham B.W. Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration // Colloids Surf. A. 2011. V. 383. № 1-3. P. 2-9. https://doi.org/10.1016/j.colsurfa.2010.12.025
- Parsons D.F., Ninham B.W. Charge reversal of surfaces in divalent electrolytes: The role of ionic dispersion interactions // Langmuir 2010. V. 26. № 9. P. 6430-6436. https://doi.org/10.1021/la9041265
- Tavares F.W., Bostrom M., Lima E.R.A., Biscaia E.C.Jr. Ion-specific thermodynamic properties of colloids and proteins // Fluid Phase Equilibria 2010. V. 296. № 2. P. 99-105. https://doi.org/10.1016/j.fluid.2010.02.031
- Bohinc K., Shrestha A., May S. The Poisson-Helmholtz-Boltzmann model // Eur. Phys. J. E 2011. V. 34. № 10. P. 108. https://doi.org/10.1140/epjc/i2011-11108-6
- Bohinc K., Shrestha A., Brumen M., May S. Poisson-Helmholtz-Boltzmann model of the electric double layer: Analysis of monovalent ionic mixtures // Phys. Rev. E. 2012. V. 85. № 3. P. 031130. https://doi.org/10.1103/PhysRevE.85.031130
- Zhao H. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance // Phys. Rev. E. 2012. V. 86. № 5. P. 051502. https://doi.org/10.1103/PhysRevE.86.051502
- Brown M.A., Bossa G.V., May S. Emergence of a Stern layer from the incorporation of hydration interactions into the Gouy-Chapman model of the electrical double layer // Langmuir 2015. V. 31. № 42. P. 11477-11483. https://doi.org/10.1021/acs.langmuir.5b02389
- Goswami P., Dhar J., Ghosh U., Chakraborty S. Solvent-mediated non-electrostatic ion-ion interactions predicting anomalies in electrophoresis // Electrophoresis 2014. V. 38. № 5. P. 712-719. https://doi.org/10.1002/elps.201600394
- Berntson B.K., Downing R., Bossa G.V., May S. Debye-Hückel theory of weakly curved macroions: Implementing ion specificity through a composite Coulomb-Yukawa interaction potential // Phys. Rev. E. 2018. V. 98. № 2. P. 022609. https://doi.org/10.1103/PhysRevE.98.022609
- Brown M.A., Abbas Z., Kleibert A., Green R.G., Goel A., May S., Squires T.M. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface // Phys. Rev. X. 2016. V. 6. № 1. P. 011007. https://doi.org/10.1103/PhysRevX.6.011007
- Spaight J., Downing R., May S., de Carvalho S.J., Bossa G.V. Modeling hydration-mediated ion-ion interactions in electrolytes through oscillating Yukawa potentials // Phys. Rev. E. 2020. V. 101. № 5. P. 052603. https://doi.org/10.1103/PhysRevE.101.052603
- Caetano D.L.Z., Bossa G.V., de Oliveira V.M., Brown M.A., de Carvalho S.J., May S. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations // Phys. Chem. Chem. Phys. 2017. V. 19. № 35. P. 23971-23981. https://doi.org/10.1039/C7CP04672C
- Valleau J.P., Torrie G.M. The electrical double layer. III. Modified Gouy-Chapman theory with unequal ion sizes // J. Chem. Phys. 1982. V. 76. № 9. P. 4623-4630. https://doi.org/10.1063/1.443542
- Bhuiyan L.B., Blum L., Henderson D. The application of the modified Gouy-Chapman theory to an electrical double layer containing asymmetric ions // J. Chem. Phys. 1983. V. 78. № 1. P. 442-445. https://doi.org/10.1063/1.444523
- Valiskó M., Henderson D., Boda D. Competition between the effects of asymmetries in ion diameters and charges in an electrical double layer studied by Monte Carlo simulations and theories // J. Phys. Chem. B 2004. V. 108. № 42. P. 16548-16555. https://doi.org/10.1021/jp0473873
Дополнительные файлы


