FABRICATION OF STABLE CONCENTRATED PICKERING EMULSIONS BASED ON CARBON NITRIDE AND GRAPHENE OXIDE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study introduces a novel method for producing stable, highly concentrated Pickering emulsions in a water/n-hexane system, stabilized by 2D carbon nitride (g-C3N4) particles and their hybrid dispersions with graphene oxide (GO). The approach leverages electrostatic interactions induced by zinc acetate (Zn(OAc)2). Sedimentation stability analysis and optical microscopy identified optimal conditions for emulsions with g-C3N4 concentrations up to 6 mg/mL. Fluorescence microscopy with fluorescein confirmed oil-in-water (o/w) emulsion formation, stabilized by either g-C3N4 alone or GO/g-C3N4 binary dispersions. Zeta potential measurements of g-C3N4 sols and emulsions revealed the stabilization mechanism: acetate ions (CH3COO) drive negatively charged g-C3N4 particles from the aqueous phase to the interface, while zinc cations (Zn2+) adsorb onto g-C3N4 surfaces, suppressing particle repulsion within droplet shells. For GO/g-C3N4 hybrids, Zn2+ further stabilizes emulsions via coordination bonds between GO carboxyl groups and g-C3N4, ensuring particle integration and preventing phase separation. The findings offer a labile platform for designing tunable photocatalytic systems for organic pollutant degradation and functional material synthesis.

About the authors

A. I Gorshkova

Lomonosov Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia; Moscow, Russia

A. G Nugmanova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia

A. I Zvyagina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia

E. K Urodkova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia

A. A Mikhailov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia

P. V Prikhodchenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: kalinina@phyche.ac.ru
Moscow, Russia

M. A Kalinina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kalinina@phyche.ac.ru
Moscow, Russia

References

  1. Pickering S. U. CXCV1. — Emulsions // J. Chem. Soc. Trans. 1907. V. 91. P. 2001–2021. https://doi.org/10.1039/CT9079102001
  2. Chevalier Y., Balzinger M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions // Colloids Surf. A: Physicochem. Eng. Asp. 2013. V. 439. P. 23–34. https://doi.org/10.1016/j.colsurfa.2013.02.054
  3. Maji N.C., Kaisare N.S., Basavaraj M.G. Titania stabilized Pickering emulsion for photocatalytic degradation of o-xylene // Colloids Surf. A: Physicochem. Eng. Asp. 2025. V. 705. P. 135534. https://doi.org/10.1016/j.colsurfa.2024.135534
  4. Wu W., et al. Intensified photocatalytic degradation of nitrobenzene by Pickering emulsion of ZnO nanoparticles // Particuology. 2010. V. 8. № 5. P. 453–457. https://doi.org/10.1016/j.partic.2010.05.006
  5. Gricius Z., Øye G. Recent advances in the design and use of Pickering emulsions for wastewater treatment applications // Soft Matter. 2023. V. 19. № 5. P. 818–840. https://doi.org/10.1039/D2SM01437H
  6. Zhang F., et al. Pickering emulsions stabilized by metal–organic frameworks, graphitic carbon nitride and graphene oxide // Soft Matter. 2021. V. 18. № 1. P. 10–18. https://doi.org/10.1039/D1SM01540K
  7. Ni L., et al. Pickering emulsion catalysis: interfacial chemistry, catalyst design, challenges, and perspectives // Angew. Chem. Int. Ed. 2022. V. 61. № 30. P. e202115885. https://doi.org/10.1002/anie.202115885
  8. Zhang X., et al. One-step dye wastewater treatment by combined adsorption, extraction, and photocatalysis using g-C3N4 pickering emulsion // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 644. P. 128814. https://doi.org/10.1016/j.colsurfa.2022.128814
  9. Dreyer D.R., et al. The chemistry of graphene oxide // Chem. Soc. Rev. 2010. V. 39. № 1. P. 228–240. https://doi.org/10.1039/B917103G
  10. Gómez-Navarro C., et al. Atomic structure of reduced graphene oxide // Nano Lett. 2010. V. 10. № 4. P. 1144–1148. https://doi.org/10.1021/nl9031617
  11. Terrones H., et al. The role of defects and doping in 2D graphene sheets and 1D nanoribbons // Rep. Prog. Phys. 2012. V. 75. № 6. P. 062501. https://doi.org/10.1088/0034-4885/75/6/062501
  12. Motevalli B., Fox B.L., Barnard A.S. Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning // Comput. Mater. Sci. 2022. V. 211. P. 111526. https://doi.org/10.1016/j.commatsci.2022.111526
  13. Guo X., Lu G., Chen J. Graphene-based materials for photoanodes in dye-sensitized solar cells // Front. Energy Res. 2015. V. 3. P. 50. https://doi.org/10.3389/fenrg.2015.00550
  14. He Y., et al. Factors that affect pickering emulsions stabilized by graphene oxide // ACS Appl. Mater. Interfaces. 2013. V. 5. № 11. P. 4843-4855. https://doi.org/10.1021/am400582n
  15. Chen X., et al. Phase behavior of Pickering emulsions stabilized by graphene oxide sheets and resins // Energy Fuels. 2017. V. 31. № 12. P. 13439-13447. https://doi.org/10.1021/acs.energyfuels.7b02672
  16. Zhu J., et al. Amine functionalized graphene oxide stabilized Pickering emulsion for highly efficient knsevenagel condensation in aqueous medium // Catal. Lett. 2020. V. 150. № 7. P. 1909-1922. https://doi.org/10.1007/s10562-020-03103-4
  17. Wang X., et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light // Nat. Mater. 2009. V. 8. № 1. P. 76-80. https://doi.org/10.1038/nmat2317
  18. Yang Y., et al. An unusual red carbon nitride to boost the photoelectrochemical performance of wide bandgap photoanodes // Adv. Funct. Mater. 2018. V. 28. № 47. P. 1805698. https://doi.org/10.1002/adfm.201805698
  19. Qu L. H., et al. Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial strain // Vacuum. 2020. V. 176. P. 109358. https://doi.org/10.1016/j.vacuum.2020.109358
  20. Zhang X. S., et al. Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H+-mediated mechanism // Chemosphere. 2015. V. 141. P. 127-133. https://doi.org/10.1016/j.chemosphere.2015.06.051
  21. Li X., et al. Salt-enhanced photocatalytic hydrogen production from water with carbon nitride nanorod photocatalysts: cation and pH dependence // J. Mater. Chem. A. 2019. V. 7. № 32. P. 18987-18995. https://doi.org/10.1039/C9TA04942H
  22. Darkwah W.K., Ao Y. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications // Nanoscale Res. Lett. 2018. V. 13. № 1. P. 388. https://doi.org/10.1186/s11671-018-2702-3
  23. Yan S.C., Li Z.S., Zou Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine // Langmuir. 2009. V. 25. № 17. P. 10397-10401. https://doi.org/10.1021/la900923z
  24. Bhanderi D., Lakhani P., Modi C.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review // RSC Sustain. 2024. V. 2. № 2. P. 265-287. https://doi.org/10.1039/D3SU00382E
  25. Wu Y., et al. TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation // Res. Chem. Intermed. 2016. V. 42. № 4. P. 3609-3624. https://doi.org/10.1007/s11164-015-2234-8
  26. Lin Q., et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities // Appl. Catal. B Environ. 2015. V. 163. P. 135-142. https://doi.org/10.1016/j.apcatb.2014.07.053
  27. Han C., et al. Direct observation of carbon nitride-stabilized Pickering emulsions // Langmuir. 2018. V. 34. № 34. P. 10135-10143. https://doi.org/10.1021/acs.langmuir.8b02347
  28. Imani I.M., et al. Study of O/W emulsion stability in presence of SDS and graphitic carbon nitride (g-C3N4) nanosheets // Colloids Surf. A: Physicochem. Eng. Asp. 2020. V. 586. P. 124191. https://doi.org/10.1016/j.colsurfa.2019.124191
  29. Liu S., et al. Study of the efficiency of g-C3N4-loaded P25 for photocatalytic degradation of malachite green in aqueous and Pickering emulsion systems // J. Mater. Sci. Mater. Electron. 2022. V. 33. № 8. P. 5846-5858. https://doi.org/10.1007/s10854-022-07767-z
  30. Sokolov M., et al. Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties // J. Compos. Sci. 2023. V. 7. № 1. P.14. https://doi.org/10.3390/jcs7010014
  31. Nugmanova A.G., et al. Interfacial self-assembly of porphyrin-based SURMOF/graphene oxide hybrids with tunable pore size: An approach toward size-selective ambivalent heterogeneous photocatalysts // Appl. Surf. Sci. 2022. V. 579. P. 152080. https://doi.org/10.1016/j.apsusc.2021.152080
  32. Kim J., et al. Graphene oxide sheets at interfaces // J. Am. Chem. Soc. 2010. V. 132. N. 23. P. 8180-8186. https://doi.org/10.1021/ja102777p
  33. Lai L., Zhang T., Zheng C. Study of foam drainage agent based on g-C3N4 nanosheets reinforced stabilization // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 657. P. 130607. https://doi.org/10.1016/j.colsurfa.2022.130607
  34. Whitby C.P., Fornasiero D., Ralston J. Effect of adding anionic surfactant on the stability of Pickering emulsions // J. Colloid Interface Sci. 2009. V. 329. N. 1. P. 173-181. https://doi.org/10.1016/j.jcis.2008.09.056
  35. Mao Q., et al. Chitosan-hydrophobic alginate nanocomposites stabilized pH-triggered Pickering emulsion for drug controlled-release // Int. J. Biol. Macromol. 2020. V. 162. P. 1888-1896. https://doi.org/10.1016/j.ijbiomac.2020.08.093
  36. Kundu P., et al. Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of electrolytes and temperature // Chem. Eng. Sci. 2013. V. 102. P. 176-185. https://doi.org/10.1016/j.ces.2013.07.050
  37. Li Z.Q., et al. Fabrication of nanosheets of a fluorescent metal-organic framework [Zn (BDC)(H2O)] (BDC = 1,4-benzenedicarboxylate): Ultrasonic synthesis and sensing of ethylamine // Inorg. Chem. Commun. 2008. V. 11. N. 11. P. 1375-1377. https://doi.org/10.1016/j.inoche.2008.09.010
  38. Medvedev A.G., et al. Graphene oxide supported tin dioxide: synthetic approaches and electrochemical characterization as anodes for lithium- and sodium-ion batteries // Russ. Chem. Bull. 2018. V. 67. N. 7. P. 1131-1141. https://doi.org/10.1007/s11172-018-2194-4
  39. Piao H., et al. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis // Nano-Micro Lett. 2022. V. 14. N. 1. P. 55. https://doi.org/10.1007/s40820-022-00794-9
  40. Hong J., et al. Porous carbon nitride nanosheets for enhanced photocatalytic activities // Nanoscale. 2014. V. 6. N. 24. P. 14984-14990. https://doi.org/10.1039/C4NR05341A
  41. Wu J., Ma G.H. Recent studies of Pickering emulsions: particles make the difference // Small. 2016. V. 12. N. 34. P. 4633-4648. https://doi.org/10.1002/smll.201600877
  42. Zhu B., et al. Isoelectric point and adsorption activity of porous g-C3N4 // Appl. Surf. Sci. 2015. V. 344. P. 188-195. https://doi.org/10.1016/j.apsusc.2015.03.086
  43. Xu J., et al. The Performance of Nanoparticulate Graphitic Carbon Nitride as an Amphiphile // J. Am. Chem. Soc. 2017. V. 139. N. 17. P. 6026-6029. https://doi.org/10.1021/jacs.6b11346

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).