FABRICATION OF STABLE CONCENTRATED PICKERING EMULSIONS BASED ON CARBON NITRIDE AND GRAPHENE OXIDE
- Authors: Gorshkova A.I1,2, Nugmanova A.G2, Zvyagina A.I2, Urodkova E.K2, Mikhailov A.A3, Prikhodchenko P.V3, Kalinina M.A2
-
Affiliations:
- Lomonosov Moscow State University
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 642–655
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376452
- DOI: https://doi.org/10.7868/S3034543X25060054
- ID: 376452
Cite item
Abstract
This study introduces a novel method for producing stable, highly concentrated Pickering emulsions in a water/n-hexane system, stabilized by 2D carbon nitride (g-C3N4) particles and their hybrid dispersions with graphene oxide (GO). The approach leverages electrostatic interactions induced by zinc acetate (Zn(OAc)2). Sedimentation stability analysis and optical microscopy identified optimal conditions for emulsions with g-C3N4 concentrations up to 6 mg/mL. Fluorescence microscopy with fluorescein confirmed oil-in-water (o/w) emulsion formation, stabilized by either g-C3N4 alone or GO/g-C3N4 binary dispersions. Zeta potential measurements of g-C3N4 sols and emulsions revealed the stabilization mechanism: acetate ions (CH3COO–) drive negatively charged g-C3N4 particles from the aqueous phase to the interface, while zinc cations (Zn2+) adsorb onto g-C3N4 surfaces, suppressing particle repulsion within droplet shells. For GO/g-C3N4 hybrids, Zn2+ further stabilizes emulsions via coordination bonds between GO carboxyl groups and g-C3N4, ensuring particle integration and preventing phase separation. The findings offer a labile platform for designing tunable photocatalytic systems for organic pollutant degradation and functional material synthesis.
Keywords
About the authors
A. I Gorshkova
Lomonosov Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia; Moscow, Russia
A. G Nugmanova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia
A. I Zvyagina
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia
E. K Urodkova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia
A. A Mikhailov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia
P. V Prikhodchenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: kalinina@phyche.ac.ru
Moscow, Russia
M. A Kalinina
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kalinina@phyche.ac.ru
Moscow, Russia
References
- Pickering S. U. CXCV1. — Emulsions // J. Chem. Soc. Trans. 1907. V. 91. P. 2001–2021. https://doi.org/10.1039/CT9079102001
- Chevalier Y., Balzinger M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions // Colloids Surf. A: Physicochem. Eng. Asp. 2013. V. 439. P. 23–34. https://doi.org/10.1016/j.colsurfa.2013.02.054
- Maji N.C., Kaisare N.S., Basavaraj M.G. Titania stabilized Pickering emulsion for photocatalytic degradation of o-xylene // Colloids Surf. A: Physicochem. Eng. Asp. 2025. V. 705. P. 135534. https://doi.org/10.1016/j.colsurfa.2024.135534
- Wu W., et al. Intensified photocatalytic degradation of nitrobenzene by Pickering emulsion of ZnO nanoparticles // Particuology. 2010. V. 8. № 5. P. 453–457. https://doi.org/10.1016/j.partic.2010.05.006
- Gricius Z., Øye G. Recent advances in the design and use of Pickering emulsions for wastewater treatment applications // Soft Matter. 2023. V. 19. № 5. P. 818–840. https://doi.org/10.1039/D2SM01437H
- Zhang F., et al. Pickering emulsions stabilized by metal–organic frameworks, graphitic carbon nitride and graphene oxide // Soft Matter. 2021. V. 18. № 1. P. 10–18. https://doi.org/10.1039/D1SM01540K
- Ni L., et al. Pickering emulsion catalysis: interfacial chemistry, catalyst design, challenges, and perspectives // Angew. Chem. Int. Ed. 2022. V. 61. № 30. P. e202115885. https://doi.org/10.1002/anie.202115885
- Zhang X., et al. One-step dye wastewater treatment by combined adsorption, extraction, and photocatalysis using g-C3N4 pickering emulsion // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 644. P. 128814. https://doi.org/10.1016/j.colsurfa.2022.128814
- Dreyer D.R., et al. The chemistry of graphene oxide // Chem. Soc. Rev. 2010. V. 39. № 1. P. 228–240. https://doi.org/10.1039/B917103G
- Gómez-Navarro C., et al. Atomic structure of reduced graphene oxide // Nano Lett. 2010. V. 10. № 4. P. 1144–1148. https://doi.org/10.1021/nl9031617
- Terrones H., et al. The role of defects and doping in 2D graphene sheets and 1D nanoribbons // Rep. Prog. Phys. 2012. V. 75. № 6. P. 062501. https://doi.org/10.1088/0034-4885/75/6/062501
- Motevalli B., Fox B.L., Barnard A.S. Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning // Comput. Mater. Sci. 2022. V. 211. P. 111526. https://doi.org/10.1016/j.commatsci.2022.111526
- Guo X., Lu G., Chen J. Graphene-based materials for photoanodes in dye-sensitized solar cells // Front. Energy Res. 2015. V. 3. P. 50. https://doi.org/10.3389/fenrg.2015.00550
- He Y., et al. Factors that affect pickering emulsions stabilized by graphene oxide // ACS Appl. Mater. Interfaces. 2013. V. 5. № 11. P. 4843-4855. https://doi.org/10.1021/am400582n
- Chen X., et al. Phase behavior of Pickering emulsions stabilized by graphene oxide sheets and resins // Energy Fuels. 2017. V. 31. № 12. P. 13439-13447. https://doi.org/10.1021/acs.energyfuels.7b02672
- Zhu J., et al. Amine functionalized graphene oxide stabilized Pickering emulsion for highly efficient knsevenagel condensation in aqueous medium // Catal. Lett. 2020. V. 150. № 7. P. 1909-1922. https://doi.org/10.1007/s10562-020-03103-4
- Wang X., et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light // Nat. Mater. 2009. V. 8. № 1. P. 76-80. https://doi.org/10.1038/nmat2317
- Yang Y., et al. An unusual red carbon nitride to boost the photoelectrochemical performance of wide bandgap photoanodes // Adv. Funct. Mater. 2018. V. 28. № 47. P. 1805698. https://doi.org/10.1002/adfm.201805698
- Qu L. H., et al. Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial strain // Vacuum. 2020. V. 176. P. 109358. https://doi.org/10.1016/j.vacuum.2020.109358
- Zhang X. S., et al. Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H+-mediated mechanism // Chemosphere. 2015. V. 141. P. 127-133. https://doi.org/10.1016/j.chemosphere.2015.06.051
- Li X., et al. Salt-enhanced photocatalytic hydrogen production from water with carbon nitride nanorod photocatalysts: cation and pH dependence // J. Mater. Chem. A. 2019. V. 7. № 32. P. 18987-18995. https://doi.org/10.1039/C9TA04942H
- Darkwah W.K., Ao Y. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications // Nanoscale Res. Lett. 2018. V. 13. № 1. P. 388. https://doi.org/10.1186/s11671-018-2702-3
- Yan S.C., Li Z.S., Zou Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine // Langmuir. 2009. V. 25. № 17. P. 10397-10401. https://doi.org/10.1021/la900923z
- Bhanderi D., Lakhani P., Modi C.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review // RSC Sustain. 2024. V. 2. № 2. P. 265-287. https://doi.org/10.1039/D3SU00382E
- Wu Y., et al. TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation // Res. Chem. Intermed. 2016. V. 42. № 4. P. 3609-3624. https://doi.org/10.1007/s11164-015-2234-8
- Lin Q., et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities // Appl. Catal. B Environ. 2015. V. 163. P. 135-142. https://doi.org/10.1016/j.apcatb.2014.07.053
- Han C., et al. Direct observation of carbon nitride-stabilized Pickering emulsions // Langmuir. 2018. V. 34. № 34. P. 10135-10143. https://doi.org/10.1021/acs.langmuir.8b02347
- Imani I.M., et al. Study of O/W emulsion stability in presence of SDS and graphitic carbon nitride (g-C3N4) nanosheets // Colloids Surf. A: Physicochem. Eng. Asp. 2020. V. 586. P. 124191. https://doi.org/10.1016/j.colsurfa.2019.124191
- Liu S., et al. Study of the efficiency of g-C3N4-loaded P25 for photocatalytic degradation of malachite green in aqueous and Pickering emulsion systems // J. Mater. Sci. Mater. Electron. 2022. V. 33. № 8. P. 5846-5858. https://doi.org/10.1007/s10854-022-07767-z
- Sokolov M., et al. Ion-Mediated Self-Assembly of Graphene Oxide and Functionalized Perylene Diimides into Hybrid Materials with Photocatalytic Properties // J. Compos. Sci. 2023. V. 7. № 1. P.14. https://doi.org/10.3390/jcs7010014
- Nugmanova A.G., et al. Interfacial self-assembly of porphyrin-based SURMOF/graphene oxide hybrids with tunable pore size: An approach toward size-selective ambivalent heterogeneous photocatalysts // Appl. Surf. Sci. 2022. V. 579. P. 152080. https://doi.org/10.1016/j.apsusc.2021.152080
- Kim J., et al. Graphene oxide sheets at interfaces // J. Am. Chem. Soc. 2010. V. 132. N. 23. P. 8180-8186. https://doi.org/10.1021/ja102777p
- Lai L., Zhang T., Zheng C. Study of foam drainage agent based on g-C3N4 nanosheets reinforced stabilization // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 657. P. 130607. https://doi.org/10.1016/j.colsurfa.2022.130607
- Whitby C.P., Fornasiero D., Ralston J. Effect of adding anionic surfactant on the stability of Pickering emulsions // J. Colloid Interface Sci. 2009. V. 329. N. 1. P. 173-181. https://doi.org/10.1016/j.jcis.2008.09.056
- Mao Q., et al. Chitosan-hydrophobic alginate nanocomposites stabilized pH-triggered Pickering emulsion for drug controlled-release // Int. J. Biol. Macromol. 2020. V. 162. P. 1888-1896. https://doi.org/10.1016/j.ijbiomac.2020.08.093
- Kundu P., et al. Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of electrolytes and temperature // Chem. Eng. Sci. 2013. V. 102. P. 176-185. https://doi.org/10.1016/j.ces.2013.07.050
- Li Z.Q., et al. Fabrication of nanosheets of a fluorescent metal-organic framework [Zn (BDC)(H2O)] (BDC = 1,4-benzenedicarboxylate): Ultrasonic synthesis and sensing of ethylamine // Inorg. Chem. Commun. 2008. V. 11. N. 11. P. 1375-1377. https://doi.org/10.1016/j.inoche.2008.09.010
- Medvedev A.G., et al. Graphene oxide supported tin dioxide: synthetic approaches and electrochemical characterization as anodes for lithium- and sodium-ion batteries // Russ. Chem. Bull. 2018. V. 67. N. 7. P. 1131-1141. https://doi.org/10.1007/s11172-018-2194-4
- Piao H., et al. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis // Nano-Micro Lett. 2022. V. 14. N. 1. P. 55. https://doi.org/10.1007/s40820-022-00794-9
- Hong J., et al. Porous carbon nitride nanosheets for enhanced photocatalytic activities // Nanoscale. 2014. V. 6. N. 24. P. 14984-14990. https://doi.org/10.1039/C4NR05341A
- Wu J., Ma G.H. Recent studies of Pickering emulsions: particles make the difference // Small. 2016. V. 12. N. 34. P. 4633-4648. https://doi.org/10.1002/smll.201600877
- Zhu B., et al. Isoelectric point and adsorption activity of porous g-C3N4 // Appl. Surf. Sci. 2015. V. 344. P. 188-195. https://doi.org/10.1016/j.apsusc.2015.03.086
- Xu J., et al. The Performance of Nanoparticulate Graphitic Carbon Nitride as an Amphiphile // J. Am. Chem. Soc. 2017. V. 139. N. 17. P. 6026-6029. https://doi.org/10.1021/jacs.6b11346
Supplementary files


