MOLECULAR SIMULATION OF WATER STRUCTURE IN NARROW SLITLIKE PORES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure of water in narrow slitlike pores has been studied by the methods of molecular dynamics simulation. Pores with interwall distances of 6.2–15.5 Å have been considered. Water structures resulting from spontaneous crystallization upon cooling to T = 300 K have been clarified on the basis of twoand three-dimensional order parameters. It has been shown that the observed structures can be described as sections of FCC or HCP crystals.

About the authors

YU. D. FOMIN

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia

Email: fomin314@mail.ru
Россия, 108840, Москва, Троицк, Калужское шоссе, стр. 14

E. N. TSIOK

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia

Email: fomin314@mail.ru
Россия, 108840, Москва, Троицк, Калужское шоссе, стр. 14

S. A. BOBKOV

National Research Centre “Kurchatov Institute,” Federal Center for Collective Use of Scientific Equipment “Complex for Simulation and Data Processing of Mega-Class Research Installations,” Moscow, Russia

Email: fomin314@mail.ru
Россия, 123182, Москва, площадь Академика Курчатова, дом 1

V. N. RYZHOV

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia

Author for correspondence.
Email: fomin314@mail.ru
Россия, 108840, Москва, Троицк, Калужское шоссе, стр. 14

References

  1. Mansoori G.A., Rice S.A. Advanced in Chemical Physics. Confined Fluids: Structure, Properties and Phase Behavior. New York, 2015. https://doi.org/10.1002/9781118949702.ch5
  2. Vishnyakov A., Neimark A.V. Specifics of freezing of Lennard-Jones fluid confined to molecularly thin layers // J. Chem. Phys. 2003. V. 118. № 16. P. 7585. https://doi.org/10.1063/1.1560938
  3. Takaiwa D., Hatano I., Koga K., Tanaka H. Phase diagram of water in carbon nanotubes // PNAS. 2008. V. 105. № 1. P. 39–43. https://doi.org/10.1073/pnas.0707917105
  4. Pugliese P., Conde M.M., Rovere M., Gallo. P. Freezing temperatures, ice nanotubes structures, and proton ordering of TIP4P/ICE water inside a single wall carbon nanotubes // J. Phys. Chem. B. 2017. V. 121. № 45. P. 10371–10381. https://doi.org/10.1021/acs.jpcb.7b06306
  5. Fomin Yu. D. Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pore // J. Comput. Chem. 2013. V. 34. № 30. P. 2615–2624. https://doi.org/10.1002/jcc.23429
  6. Fomin Yu.D., Tsiok E.N., Ryzhov V.N. The behavior of benzene confined in a single wall carbon nanotube // J. Comput. Chem. 2015. V. 36. № 12. P. 901–906. https://doi.org/10.1002/jcc.23872
  7. Fomin Yu.D., Tsiok E.N., Ryzhov V.N. The behavior of cyclohexane confined in slit carbon nanopore // J. Chem. Phys. 2015. V. 143. P. 184702. https://doi.org/10.1063/1.4935197
  8. Логунов М.А., Калиничев А.Г., Писарев В.В. Структура углеводородной жидкости и течения Куэтта в щелевых порах со стенками из пирофиллита // Высокомолекулярные соединения. Серия А. 2022. Т. 64. С. 470–480. https://doi.org/10.31857/S2308112022700262
  9. Pisarev V.V., Kalinichev A.G. Couette flow of pentane in clay nanopores: Molecular dynamics simulation // Journal of Molecular Liquids. 2022. V. 366. P. 120290. https://doi.org/10.1016/j.molliq.2022.120290
  10. Shchukin I.A., Fomin Yu.D. Crystal structure of a system with three-body interactions in strong confinement // Results in Physics. 2022. V. 34. P. 105239. https://doi.org/10.1016/j.rinp.2022.105239
  11. Stillinger F.H., Weber Th.A. Computer simulation of local order in condensed phases of silicon // Phys. Rev. B. 1985. V. 31. № 8. P. 5262. https://doi.org/10.1103/PhysRevB.31.5262
  12. Pansu B., Pieranski P., Strzelecki L. Thin colloidal crystals: a series of structural transitions // Journal de Physique. 1983. V. 44. № 4. P. 531–536. https://doi.org/10.1051/jphys:01983004404053100
  13. Murray Ch.A., Grier D.G. Video microscopy of monodisperse colloidal systems // Annual Review of Physical Chemistry. 1996. V. 47. P. 421–462. https://doi.org/10.1146/annurev.physchem.47.1.421
  14. Pansu. B., Pieranski Pi., Pieransli Pa. Structures of thin layers of hard spheres: High pressure limit // Journal de Physique. 1984. V. 45. № 2. P. 331–339. https://doi.org/10.1051/jphys:01984004502033100
  15. Fomin Yu.D. Between two and three dimensions: Crystal structures in a slit pore // J. Colloid and Interface Science. 2020. V. 580. P. 135–145. https://doi.org/10.1016/j.jcis.2020.06.046
  16. Iakovlev E., Zhilyaev P., Akhatov. I. Atomistic study of the solid state inside graphene nanobubbles // Scientific Reports. 2017. V. 7. P. 17906.
  17. Zamborlini G., Imam M., Patera L.L. et al. Nanobubbles at GPa pressure under graphene // Nano Letters. 2015. V. 15. № 9. P. 6162– 6169. https://doi.org/10.1021/acs.nanolett.5b02475
  18. Fomin Yu.D., Gribova N.V., Ryzhov V.N., Stishov S.M., Frenkel D. Quasibinary amorphous phase in a three-dimensional system of particles with repulsive-shoulder interactions // J. Chem. Phys. 2008. V. 129. № 6. P. 064512. https://doi.org/10.1063/1.2965880
  19. Gribova N.V., Fomin Yu.D., Frenkel D., Ryzhov V.N. Waterlike thermodynamic anomalies in a repulsive-shoulder potential system // Phys. Rev. E. 2009. V. 79. P. 051202. https://doi.org/10.1103/PhysRevE.79.051202
  20. Fomin Yu.D., Tsiok E.N., Ryzhov V.N. Complex phase behavior of the system of particles with repulsive shoulder and attractive well // J. Chem. Phys. 2011. V. 134. № 4. P. 044523. https://doi.org/10.1063/1.3530790
  21. Dudalov D.E., Fomin Yu.D., Tsiok E.N., Ryzhov V.N. Melting scenario of the two-dimensional core-softened system: first-order or continuous transition? // Journal of Physics: Conference Series. 2014. V. 510. P. 012016. https://doi.org/10.1088/1742-6596/510/1/012016
  22. Dudalov D.E., Fomin Yu.D., Tsiok E.N., Ryzhov V.N. Effect of a potential softness on the solid−liquid transition in a two-dimensional core-softened potential system // J. Chem. Phys. 2014. V. 141. № 18C522. https://doi.org/10.1063/1.4896825
  23. Kryuchkov N.P., Yurchenko S.O., Fomin Yu.D., Tsiok E.N., Ryzhov V.N. Complex crystalline structures in a two-dimensional core-softened system // Soft Matter. 2018. V. 14. № 11. P. 2152–2162. https://doi.org/10.1039/C7SM02429K
  24. Dudalov D.E., Fomin Yu.D., Tsiok E.N., Ryzhov V.N. How dimensionality changes the anomalous behavior and melting scenario of a core-softened potential system? // Soft Matter. 2014. V. 10. № 27. P. 4966. https://doi.org/10.1039/C4SM00124A
  25. Tsiok E.N., Fomin Yu.D., Ryzhov V.N. The effect of confinement on the solid–liquid transition in a core-softened potential system // Physica A. 2020. V. 550. P. 124521. https://doi.org/10.1016/j.physa.2020.124521
  26. Fomin Yu.D., Teslyuk A.B. The structure of a core-softened system in a narrow-slit pore // Physics and Chemistry of Liquids. 2022. V. 60. № 6. P. 809–826. https://doi.org/10.1080/00319104.2022.2053973
  27. Фомин Ю.Д., Циок Е.Н., Рыжов В.Н. Структура системы сглаженных коллапсирующих сфер в сильном конфайнменте // Коллоидный журнал. 2022. Т. 84. № 6. С. 809–826.
  28. Yeh In-Ch., Berkowitz M.L. Ewald summation for systems with slab geometry // J. Chem. Phys. 1999. V. 111. № 7. P. 3155–3162. https://doi.org/10.1063/1.479595
  29. Algara-Siller G., Lehtinen O., Wang F.C., Nair R.R., Kaiser U., Wu H.A., Geim A.K., Grigorieva I.V. Square ice in graphene nanocapillaries // Nature. 2015. V. 519. P. 443–445. https://doi.org/10.1038/nature14295
  30. Kumar P., Buldyrev S.V., Starr F.W., Giovambattista N., Stanley H.Eu. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates // Phys. Rev. E. 2005. V. 72. № 5. P. 051503. https://doi.org/10.1103/PhysRevE.72.051503
  31. Han S., Choi M.Y., Kumar P., Stanley H.Eu. Phase transitions in confined water nanofilms // Nature Physics. 2010. V. 6. P. 685–689. https://doi.org/10.1038/nphys1708
  32. Zubeltzu J., Artacho E. Simulation of water nano-confined between corrugated planes // J. Chem. Phys. 2017. V. 147. № 19. P. 194509. https://doi.org/10.1063/1.5011468
  33. Mahoney M.W., Jorgensen W.L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions // J. Chem. Phys. 2000. V. 112. № 20. P. 8910–8922. https://doi.org/10.1063/1.481505
  34. Abascal J.L.F., Vega C. A general purpose model for the condensed phases of water: TIP4P/2005 // J. Chem. Phys. 2005. V. 123. № 23. P. 234505. https://doi.org/10.1063/1.2121687
  35. Sanz E., Vega C., Abascal J.L.F., MacDowell L.G. Phase Diagram of Water from Computer Simulation // Phys. Rev. Lett. 2004. V. 92. № 25. P. 255701. https://doi.org/10.1103/PhysRevLett.92.255701
  36. Vega C., Abascal J.L.F., Sanz E., MacDowell L.G., McBride C. Can simple models describe the phase diagram of water? // Journal of Physics: Condensed Matter. 2005. V. 17. № 45. P. S3283–S3288. https://doi.org/10.1088/0953-8984/17/45/013
  37. Steinhardt P.J., Nelson D.R., Ronchetti M. Bond-orientational order in liquids and glasses // Phys. Rev. B. 1983. V. 28. № 2. P. 784. https://doi.org/10.1103/PhysRevB.28.784
  38. Halperin B.I., Nelson D.R. Theory of two-dimensional melting // Phys. Rev. Lett. 1978. V. 41. № 2. P. 121. https://doi.org/10.1103/PhysRevLett.41.121
  39. Nelson D.R., Halperin B.I. Dislocation-mediated melting in two dimensions // Phys. Rev. B. 1979. V. 19. № 5. P. 2457. https://doi.org/10.1103/PhysRevB.19.2457
  40. Thompson A.P., Aktulga H.M., Berger R. et al. LAMMPS − a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Computer Physics Communications. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  41. Chou T., Nelson D.R. Buckling instability of a confined colloid crystal // Phys. Rev. E. 1993. V. 48. № 6. P. 4611. https://doi.org/10.1103/PhysRevE.48.4611
  42. Hirata M., Yagasaki T., Matsumoto M., Tanaka H. Phase diagram of TIP4P/2005 water at high pressure // Langmuir. 2017. V. 33 № 42. P. 11561–11569. https://doi.org/10.1021/acs.langmuir.7b01764


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies