DYNAMIC SURFACE PROPERTIES OF FIBRIN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fibrin is formed via polymerization of one of the main blood proteins, fibrinogen, under the action of an enzyme, thrombin. Dynamic surface elasticity and dynamic surface tension of mixed solutions of fibrinogen and thrombin are measured as functions of surface age and enzyme concentration (50–800 U/L). The nonmonotonic pattern of the dependences for the dynamic surface elasticity indicates the multistage character of fibrin film formation and makes it possible to monitor the transition from unfolded protein to individual filamentous aggregates; a network of branched fibrils; and, finally, a continuous film. The dynamic surface elasticity of fibrin films is twofold higher than the corresponding values for fibrinogen (115 and 55 mN/m, respectively). The use of different types of microscopy makes it possible to assess the morphology of the obtained films.

About the authors

O. YU. MILYAEVA

Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia

Email: o.milyaeva@spbu.ru
Россия, 198504, Санкт-Петербург, Университетский просп., 26

A. R. RAFIKOVA

Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia

Author for correspondence.
Email: o.milyaeva@spbu.ru
Россия, 198504, Санкт-Петербург, Университетский просп., 26

References

  1. Li Y., Meng H., Liu Y., Lee B.P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering // Scientific World Journal. 2015. V. 2015. Article ID 685690. https://doi.org/10.1155/2015/685690
  2. Spotnitz W.D. Fibrin sealant: Past, present, and future: A brief review // World J. Surg. 2010. V. 34. № 4. P. 632–634. https://doi.org/10.1007/s00268-009-0252-7
  3. Al Kayal T., Losi P., Pierozzi S., Soldani G.A. New method for fibrin-based electrospun/sprayed scaffold fabrication // Sci. Rep. 2020. V. 10. № 1. P. 1–4. https://doi.org/10.1038/s41598-020-61933-z
  4. Janmey P.A., Winer J.P., Weisel J.W. Fibrin gels and their clinical and bioengineering applications // J. R. Soc. Interface. 2009. V. 6. № 30. P. 1–10. https://doi.org/10.1098/rsif.2008.0327
  5. Woolverton C.J., Fulton J.A., Salstrom S.J., Hayslip J., Haller N.A., Wildroudt M.L., MacPhee M. Tetracycline delivery from fibrin controls peritoneal infection without measurable systemic antibiotic // J. Antimicrob. Chemother. 2001. V. 48. № 6. P. 861–867. https://doi.org/10.1093/jac/48.6.861
  6. Karp J.M., Sarraf F., Shoichet M.S., Davies J.E. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study // J. Biomed. Mater. Res. Part A. 2004. V. 71. № 1. P. 162–171. https://doi.org/10.1002/jbm.a.30147
  7. Ho W., Tawil B., Dunn J.C.Y., Wu B.M. The behavior of human mesenchymal stem cells in 3D fibrin clots: Dependence on fibrinogen concentration and clot structure // Tissue Eng. 2006. V. 12. № 6. P. 1587–1595. https://doi.org/10.1089/ten.2006.12.ft-134
  8. Stamboroski S., Joshi A., Noeske P.-L.M., Koppen S., Bruggemann D. Principles of fibrinogen fiber assembly in vitro // Macromol. Biosci. 2021. V. 21. P. 2000412. https://doi.org/10.1002/mabi.202000412
  9. Hämisch B., Büngeler A., Kielar C., Keller A., Strube O., Huber K. Self-assembly of fibrinogen in aqueous, thrombin-free solutions of variable ionic strengths // Langmuir. 2019. V. 35. № 37. P. 12113–12122. https://doi.org/10.1021/acs.langmuir.9b01515
  10. Konings J., Govers-Riemslag J.W.P., Philippou H., Mutch N.J., Borissoff J.I., Allan P., Mohan S., Tans G., Ten Cate H., Ariëns R.A.S. Factor XIIa regulates the structure of the fibrin clot independently of thrombin generation through direct interaction with fibrin // Blood. 2011. V. 118. № 14. P. 3942–3951. https://doi.org/10.1182/blood-2011-03-339572
  11. Litvinov R.I., Gorkun O.V., Owen S.F., Shuman H., Weisel J.W. Polymerization of fibrin: Specificity, strength, and stability of knob−hole interactions studied at the single-molecule level // Blood. 2005. V. 106. № 9. P. 2944–2951. https://doi.org/10.1182/blood-2005-05-2039
  12. Litvinov R.I., Gorkun O.V., Galanakis D.K., Yakovlev S., Medved L., Shuman H., Weisel J.W. Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions // Blood. 2007. V. 109. № 1. P. 130–138. https://doi.org/10.1182/blood-2006-07-033910
  13. Weisel J.W., Medved L. The structure and function of the αC domains of fibrinogen // Ann. N. Y. Acad. Sci. 2001. V. 936. P. 312–327. https://doi.org/10.1111/j.1749-6632.2001.tb03517.x
  14. Zavyalova E.G., Protopopova A.D., Kopylov A.M., Yaminsky I.V. Investigation of early stages of fibrin association // Langmuir. 2011. V. 27. P. 4922–4927. https://doi.org/10.1021/la200148n
  15. Yesudasan S., Averett R.D. Multiscale network modeling of fibrin fibers and fibrin clots with protofibril binding mechanics // Polymers. 2020. V. 12. № 6. https://doi.org/10.3390/polym12061223
  16. Gu S.X., Lentz S.R. Fibrin films: Overlooked hemostatic barriers against microbial infiltration // J. Clin. Invest. 2018. V. 128. № 8. P. 3243–3245. https://doi.org/10.1172/JCI121858
  17. Leslie D.C., Waterhouse A., Berthet J.B., Thomas M.V., Watters A.L., Abhishek J., Kim P., Hatton B.D., Nedder A., Donovan K., Super E.H., Howell C., Johnson C.P., Vu T.L., Bolgen D.E., Rifai S., Hansen A.R., Aizenberg M., Super M., Aizenberg J., Ingber D.E. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling // Nat. Biotechnol. 2014. V. 32. № 11. P. 1134–1140. https://doi.org/10.1038/nbt.3020
  18. Macrae F.L., Duval C., Papareddy P., Baker S.R., Yuldasheva N., Kearney K.J., McPherson H.R., Asquith N., Konings J., Casini A., Degen J.L., Connell S.D., Philippou H., Wolberg A.S., Herwald H., Ariëns R.A.S. A fibrin biofilm covers blood clots and protects from microbial invasion // J. Clin. Invest. 2018. V. 128. № 8. P. 3356–3368. https://doi.org/10.1172/JCI98734
  19. Миляева О.Ю., Рафикова А.Р. Влияние малых концентраций тромбина на динамические поверхностные свойства растворов фибриногена // Коллоид. журн. 2022. Т. 84. № 1. С. 58–66. https://doi.org/10.31857/S0235009222010024
  20. O’Brien E.T., Falvo M.R., Millard D., Eastwood B., Taylor R.M., Superfine R. Ultrathin self-assembled fibrin sheets // Proc. Natl. Acad. Sci. U.S.A. 2008. V. 105. № 49. P. 19438–19443. https://doi.org/10.1073/pnas.0804865105
  21. Noskov B.A. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology // Adv. Colloid Interface Sci. V. 2014. V. 206. P. 222–238. https://doi.org/10.1016/j.cis.2013.10.024
  22. Milyaeva O.Y., Gochev G., Loglio G., Miller R., Noskov B.A. Influence of polyelectrolytes on dynamic surface properties of fibrinogen solutions // Colloids Surfaces A Physicochem. Eng. Asp. 2017. V. 532. P. 108–115. https://doi.org/10.1016/j.colsurfa.2017.06.002
  23. Ariola F.S., Krishnan A., Vogler E.A. Interfacial rheology of blood proteins adsorbed to the aqueous-buffer/air interface // Biomaterials. 2006. V. 27. № 18. P. 3404–3412. https://doi.org/10.1016/j.biomaterials.2006.02.005
  24. Hernandez E.M., Franses E.I. Adsorption and surface tension of fibrinogen at the air / water interface // Colloids Surf. A. 2003. V. 214. № 1. P. 249–262. https://doi.org/10.1016/S0927-7757(02)00403-X
  25. Hassan N., Maldonado-Valderrama J., Gunning A.P., Morris V.J., Ruso J.M. Surface characterization and AFM imaging of mixed fibrinogen-surfactant films // J. Phys. Chem. B. 2011. V. 115. № 19. P. 6304–6311. https://doi.org/10.1021/jp200835j
  26. Damodaran S. In situ measurement of conformational changes in proteins at liquid interfaces by circular dichroism spectroscopy // Anal. Bioanal. Chem. 2003. V. 376. № 2. P. 182–188. https://doi.org/10.1007/s00216-003-1873-6
  27. Weisel J.W., Litvinov R.I. Fibrin Formation, Structure and Properties / ed. Parry D.A.D., Squire J.M. Cham: Springer International Publishing. 2017. P. 405–456. https://doi.org/10.1007/978-3-319-49674-0_13
  28. Peng D., Yang J., Li J., Tang C., Li B. Foams stabilized by β-Lactoglobulin amyloid fibrils: effect of pH // J. Agric. Food Chem. 2017. V. 65. № 48. P. 10658–10665. https://doi.org/10.1021/acs.jafc.7b03669
  29. Thi-Yen Le T., Hussain S., Tsay R.Y., Noskov B.A., Akentiev A., Lin S.Y. On the equilibrium surface tension of aqueous protein solutions – Bovine serum albumin // J. Mol. Liq. 2022. V. 347. P. 118305. https://doi.org/10.1016/j.molliq.2021.118305
  30. Jordens S., Rühs P.A., Sieber C., Isa L., Fischer P., Mezzenga R. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces // Langmuir. 2014. V. 30. № 33. P. 10090–10097. https://doi.org/10.1021/la5020658
  31. Bykov A.G., Lin S.-Y., Loglio G., Miller R., Noskov B.A. Kinetics of adsorption layer formation in solutions of polyacid/surfactant complexes // J. Phys. Chem. C. 2009. V. 113. № 14. P. 5664–5671. http://pubs.acs.org/doi/abs/10.1021/jp810471y
  32. Motschmann H., Teppner R. Ellipsometry in interface science / In: Moebius D., Miller R., Eds. Novel Methods to Study Interfacial Layers. Studies in Interface Science. Vol. 11. Elsevier, 2001. P. 1–42. https://doi.org/10.1016/S1383-7303(01)80014-4
  33. Milyaeva O.Y., Bykov A.G., Campbell R.A., Loglio G., Miller R., Noskov B.A. The dynamic properties of PDA-laccase films at the air−water interface // Colloids Surfaces A Physicochem. Eng. Asp. 2020. V. 599. P. 124930. https://doi.org/10.1016/j.colsurfa.2020.124930
  34. Campbell R.A., Tummino A., Varga I., Milyaeva O.Y., Krycki M.M., Lin S.Y., Laux V., Haertlein M., Forsyth V.T., Noskov B.A. Adsorption of denaturated lysozyme at the air−water interface: structure and morphology // Langmuir. 2018. V. 34. № 17. P. 5020–5029. https://doi.org/10.1021/acs.langmuir.8b00545
  35. Noskov B.A., Akentiev A. V., Bykov A.G., Loglio G., Miller R., Milyaeva O.Yu. Spread and adsorbed layers of protein fibrils at water–air interface // Colloids and Surfaces B: Biointerfaces, 2022. V. 220. P. 112942. https://doi.org/10.1016/j.colsurfb.2022.112942

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (777KB)
3.

Download (175KB)
4.

Download (178KB)
5.

Download (203KB)
6.

Download (58KB)
7.

Download (708KB)
8.

Download (835KB)
9.

Download (525KB)
10.

Download (1MB)
11.

Download (666KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies