DYNAMIC SURFACE PROPERTIES OF FIBRIN
- Authors: MILYAEVA O.Y.1, RAFIKOVA A.R.1
-
Affiliations:
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
- Issue: Vol 85, No 3 (2023)
- Pages: 355-365
- Section: Articles
- Submitted: 16.10.2023
- Published: 01.05.2023
- URL: https://journals.rcsi.science/0023-2912/article/view/137240
- DOI: https://doi.org/10.31857/S0023291222600675
- EDN: https://elibrary.ru/ZOFJIQ
- ID: 137240
Cite item
Abstract
Fibrin is formed via polymerization of one of the main blood proteins, fibrinogen, under the action of an enzyme, thrombin. Dynamic surface elasticity and dynamic surface tension of mixed solutions of fibrinogen and thrombin are measured as functions of surface age and enzyme concentration (50–800 U/L). The nonmonotonic pattern of the dependences for the dynamic surface elasticity indicates the multistage character of fibrin film formation and makes it possible to monitor the transition from unfolded protein to individual filamentous aggregates; a network of branched fibrils; and, finally, a continuous film. The dynamic surface elasticity of fibrin films is twofold higher than the corresponding values for fibrinogen (115 and 55 mN/m, respectively). The use of different types of microscopy makes it possible to assess the morphology of the obtained films.
About the authors
O. YU. MILYAEVA
Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
Email: o.milyaeva@spbu.ru
Россия, 198504, Санкт-Петербург,
Университетский просп., 26
A. R. RAFIKOVA
Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
Author for correspondence.
Email: o.milyaeva@spbu.ru
Россия, 198504, Санкт-Петербург,
Университетский просп., 26
References
- Li Y., Meng H., Liu Y., Lee B.P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering // Scientific World Journal. 2015. V. 2015. Article ID 685690. https://doi.org/10.1155/2015/685690
- Spotnitz W.D. Fibrin sealant: Past, present, and future: A brief review // World J. Surg. 2010. V. 34. № 4. P. 632–634. https://doi.org/10.1007/s00268-009-0252-7
- Al Kayal T., Losi P., Pierozzi S., Soldani G.A. New method for fibrin-based electrospun/sprayed scaffold fabrication // Sci. Rep. 2020. V. 10. № 1. P. 1–4. https://doi.org/10.1038/s41598-020-61933-z
- Janmey P.A., Winer J.P., Weisel J.W. Fibrin gels and their clinical and bioengineering applications // J. R. Soc. Interface. 2009. V. 6. № 30. P. 1–10. https://doi.org/10.1098/rsif.2008.0327
- Woolverton C.J., Fulton J.A., Salstrom S.J., Hayslip J., Haller N.A., Wildroudt M.L., MacPhee M. Tetracycline delivery from fibrin controls peritoneal infection without measurable systemic antibiotic // J. Antimicrob. Chemother. 2001. V. 48. № 6. P. 861–867. https://doi.org/10.1093/jac/48.6.861
- Karp J.M., Sarraf F., Shoichet M.S., Davies J.E. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study // J. Biomed. Mater. Res. Part A. 2004. V. 71. № 1. P. 162–171. https://doi.org/10.1002/jbm.a.30147
- Ho W., Tawil B., Dunn J.C.Y., Wu B.M. The behavior of human mesenchymal stem cells in 3D fibrin clots: Dependence on fibrinogen concentration and clot structure // Tissue Eng. 2006. V. 12. № 6. P. 1587–1595. https://doi.org/10.1089/ten.2006.12.ft-134
- Stamboroski S., Joshi A., Noeske P.-L.M., Koppen S., Bruggemann D. Principles of fibrinogen fiber assembly in vitro // Macromol. Biosci. 2021. V. 21. P. 2000412. https://doi.org/10.1002/mabi.202000412
- Hämisch B., Büngeler A., Kielar C., Keller A., Strube O., Huber K. Self-assembly of fibrinogen in aqueous, thrombin-free solutions of variable ionic strengths // Langmuir. 2019. V. 35. № 37. P. 12113–12122. https://doi.org/10.1021/acs.langmuir.9b01515
- Konings J., Govers-Riemslag J.W.P., Philippou H., Mutch N.J., Borissoff J.I., Allan P., Mohan S., Tans G., Ten Cate H., Ariëns R.A.S. Factor XIIa regulates the structure of the fibrin clot independently of thrombin generation through direct interaction with fibrin // Blood. 2011. V. 118. № 14. P. 3942–3951. https://doi.org/10.1182/blood-2011-03-339572
- Litvinov R.I., Gorkun O.V., Owen S.F., Shuman H., Weisel J.W. Polymerization of fibrin: Specificity, strength, and stability of knob−hole interactions studied at the single-molecule level // Blood. 2005. V. 106. № 9. P. 2944–2951. https://doi.org/10.1182/blood-2005-05-2039
- Litvinov R.I., Gorkun O.V., Galanakis D.K., Yakovlev S., Medved L., Shuman H., Weisel J.W. Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions // Blood. 2007. V. 109. № 1. P. 130–138. https://doi.org/10.1182/blood-2006-07-033910
- Weisel J.W., Medved L. The structure and function of the αC domains of fibrinogen // Ann. N. Y. Acad. Sci. 2001. V. 936. P. 312–327. https://doi.org/10.1111/j.1749-6632.2001.tb03517.x
- Zavyalova E.G., Protopopova A.D., Kopylov A.M., Yaminsky I.V. Investigation of early stages of fibrin association // Langmuir. 2011. V. 27. P. 4922–4927. https://doi.org/10.1021/la200148n
- Yesudasan S., Averett R.D. Multiscale network modeling of fibrin fibers and fibrin clots with protofibril binding mechanics // Polymers. 2020. V. 12. № 6. https://doi.org/10.3390/polym12061223
- Gu S.X., Lentz S.R. Fibrin films: Overlooked hemostatic barriers against microbial infiltration // J. Clin. Invest. 2018. V. 128. № 8. P. 3243–3245. https://doi.org/10.1172/JCI121858
- Leslie D.C., Waterhouse A., Berthet J.B., Thomas M.V., Watters A.L., Abhishek J., Kim P., Hatton B.D., Nedder A., Donovan K., Super E.H., Howell C., Johnson C.P., Vu T.L., Bolgen D.E., Rifai S., Hansen A.R., Aizenberg M., Super M., Aizenberg J., Ingber D.E. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling // Nat. Biotechnol. 2014. V. 32. № 11. P. 1134–1140. https://doi.org/10.1038/nbt.3020
- Macrae F.L., Duval C., Papareddy P., Baker S.R., Yuldasheva N., Kearney K.J., McPherson H.R., Asquith N., Konings J., Casini A., Degen J.L., Connell S.D., Philippou H., Wolberg A.S., Herwald H., Ariëns R.A.S. A fibrin biofilm covers blood clots and protects from microbial invasion // J. Clin. Invest. 2018. V. 128. № 8. P. 3356–3368. https://doi.org/10.1172/JCI98734
- Миляева О.Ю., Рафикова А.Р. Влияние малых концентраций тромбина на динамические поверхностные свойства растворов фибриногена // Коллоид. журн. 2022. Т. 84. № 1. С. 58–66. https://doi.org/10.31857/S0235009222010024
- O’Brien E.T., Falvo M.R., Millard D., Eastwood B., Taylor R.M., Superfine R. Ultrathin self-assembled fibrin sheets // Proc. Natl. Acad. Sci. U.S.A. 2008. V. 105. № 49. P. 19438–19443. https://doi.org/10.1073/pnas.0804865105
- Noskov B.A. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology // Adv. Colloid Interface Sci. V. 2014. V. 206. P. 222–238. https://doi.org/10.1016/j.cis.2013.10.024
- Milyaeva O.Y., Gochev G., Loglio G., Miller R., Noskov B.A. Influence of polyelectrolytes on dynamic surface properties of fibrinogen solutions // Colloids Surfaces A Physicochem. Eng. Asp. 2017. V. 532. P. 108–115. https://doi.org/10.1016/j.colsurfa.2017.06.002
- Ariola F.S., Krishnan A., Vogler E.A. Interfacial rheology of blood proteins adsorbed to the aqueous-buffer/air interface // Biomaterials. 2006. V. 27. № 18. P. 3404–3412. https://doi.org/10.1016/j.biomaterials.2006.02.005
- Hernandez E.M., Franses E.I. Adsorption and surface tension of fibrinogen at the air / water interface // Colloids Surf. A. 2003. V. 214. № 1. P. 249–262. https://doi.org/10.1016/S0927-7757(02)00403-X
- Hassan N., Maldonado-Valderrama J., Gunning A.P., Morris V.J., Ruso J.M. Surface characterization and AFM imaging of mixed fibrinogen-surfactant films // J. Phys. Chem. B. 2011. V. 115. № 19. P. 6304–6311. https://doi.org/10.1021/jp200835j
- Damodaran S. In situ measurement of conformational changes in proteins at liquid interfaces by circular dichroism spectroscopy // Anal. Bioanal. Chem. 2003. V. 376. № 2. P. 182–188. https://doi.org/10.1007/s00216-003-1873-6
- Weisel J.W., Litvinov R.I. Fibrin Formation, Structure and Properties / ed. Parry D.A.D., Squire J.M. Cham: Springer International Publishing. 2017. P. 405–456. https://doi.org/10.1007/978-3-319-49674-0_13
- Peng D., Yang J., Li J., Tang C., Li B. Foams stabilized by β-Lactoglobulin amyloid fibrils: effect of pH // J. Agric. Food Chem. 2017. V. 65. № 48. P. 10658–10665. https://doi.org/10.1021/acs.jafc.7b03669
- Thi-Yen Le T., Hussain S., Tsay R.Y., Noskov B.A., Akentiev A., Lin S.Y. On the equilibrium surface tension of aqueous protein solutions – Bovine serum albumin // J. Mol. Liq. 2022. V. 347. P. 118305. https://doi.org/10.1016/j.molliq.2021.118305
- Jordens S., Rühs P.A., Sieber C., Isa L., Fischer P., Mezzenga R. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces // Langmuir. 2014. V. 30. № 33. P. 10090–10097. https://doi.org/10.1021/la5020658
- Bykov A.G., Lin S.-Y., Loglio G., Miller R., Noskov B.A. Kinetics of adsorption layer formation in solutions of polyacid/surfactant complexes // J. Phys. Chem. C. 2009. V. 113. № 14. P. 5664–5671. http://pubs.acs.org/doi/abs/10.1021/jp810471y
- Motschmann H., Teppner R. Ellipsometry in interface science / In: Moebius D., Miller R., Eds. Novel Methods to Study Interfacial Layers. Studies in Interface Science. Vol. 11. Elsevier, 2001. P. 1–42. https://doi.org/10.1016/S1383-7303(01)80014-4
- Milyaeva O.Y., Bykov A.G., Campbell R.A., Loglio G., Miller R., Noskov B.A. The dynamic properties of PDA-laccase films at the air−water interface // Colloids Surfaces A Physicochem. Eng. Asp. 2020. V. 599. P. 124930. https://doi.org/10.1016/j.colsurfa.2020.124930
- Campbell R.A., Tummino A., Varga I., Milyaeva O.Y., Krycki M.M., Lin S.Y., Laux V., Haertlein M., Forsyth V.T., Noskov B.A. Adsorption of denaturated lysozyme at the air−water interface: structure and morphology // Langmuir. 2018. V. 34. № 17. P. 5020–5029. https://doi.org/10.1021/acs.langmuir.8b00545
- Noskov B.A., Akentiev A. V., Bykov A.G., Loglio G., Miller R., Milyaeva O.Yu. Spread and adsorbed layers of protein fibrils at water–air interface // Colloids and Surfaces B: Biointerfaces, 2022. V. 220. P. 112942. https://doi.org/10.1016/j.colsurfb.2022.112942
Supplementary files
