SILVER-CONTAINING BICOMPONENT NANOPARTICLES: RELATIONSHIP BETWEEN MORPHOLOGY AND ELECTROKINETIC POTENTIAL

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The chemical compositions, structures, and electrokinetic potentials have been studied for silvercontaining Janus-type ZnO/Ag nanoparticles, heterophase Cu/Ag nanoparticles with a uniform distribution of the components over a particle, and silver-decorated TiO2 nanoparticles. The nanoparticles have been obtained by the simultaneous electric explosion of two wires. The influence of nanoparticle surface structure on the isoelectric point position and electrokinetic potential values has been analyzed. The effect of silver localization on the electrokinetic characteristics of nanoparticles has been investigated. These characteristics have been compared with those of mechanical mixtures having the same mass ratios of the components.

作者简介

M. LERNER

Institute of Strength Physics and Materials Science, Siberian Branch,
Russian Academy of Sciences, Tomsk, Russia; Sevastopol State University, Sevastopol, 299053 Russia

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр. Академический 2/4; Россия, 299053, Севастополь, ул. Университетская, 33

O. BAKINA

Institute of Strength Physics and Materials Science, Siberian Branch,
Russian Academy of Sciences, Tomsk, Russia

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр. Академический 2/4

S. KAZANTSEV

Institute of Strength Physics and Materials Science, Siberian Branch,
Russian Academy of Sciences, Tomsk, Russia

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр. Академический 2/4

E. GLAZKOVA

Institute of Strength Physics and Materials Science, Siberian Branch,
Russian Academy of Sciences, Tomsk, Russia

Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр. Академический 2/4

N. SVAROVSKAYA

Institute of Strength Physics and Materials Science, Siberian Branch,
Russian Academy of Sciences, Tomsk, Russia

编辑信件的主要联系方式.
Email: ovbakina@ispms.tsc.ru
Россия, 634021, Томск, пр. Академический 2/4

参考

  1. Murray C.J., Ikuta K.S., Sharara F. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis // Lancet. 2022. V. 399. P. 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  2. Frei A., Verderosa A.D., Elliott A.G. et al. Metals to combat antimicrobial resistance// Nature Review Chemistry. 2023. V. 7. P. 202–224. https://doi.org/10.1038/s41570-023-00463-4
  3. Arora N., Thangavelu K., Karanikolos G.N. Bimetallic nanoparticles for antimicrobial applications // Frontiers in Chemistry. 2020. V. 8. P. 412. https://doi.org/10.3389/fchem.2020.00412
  4. Padilla-Cruz A.L., Garza-Cervantes J.A., Vasto-Anzaldo X.G. et al. Synthesis and design of Ag−Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens // Scientific Reports. 2021. V. 11. № 1. P. 1–10. https://doi.org/10.1038/s41598-021-84768-8
  5. Akter M., Sikder M.T., Rahman M.M. et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives // Journal of Advanced Research. 2017. V. 2. № 9. P. 1–16. https://doi.org/10.1016/j.jare.2017.10.008
  6. Chen M., Shou Z., Jin X. et al. Emerging strategies in nanotechnology to treat respiratory tract infections: Realizing current trends for future clinical perspectives // Drug Delivery. 2022. V. 29. № 1. P. 2442–2458. https://doi.org/10.1080/10717544.2022.2089294
  7. Ferrando R., Jellinek J., Johnston R.L. Nanoalloys: From theory to applicalions of alloy clusters and nanoparticles // Chemical Review. 2008. V. 108. № 3. P. 845‒910. https://doi.org/10.1021/cr040090g
  8. Nasrabadi H.T., Abbasi E., Davaran S. et al. Bimetallic nanoparticles: Preparation, properties, and biomedical applications // Artificial Cells, Nanomedicine, and Biotechnology. 2016. V. 44. № 1. P. 376‒380. https://doi.org/10.3109/21691401.2014.953632
  9. Belenov S.V., Volochaev V.A., Pryadchenko V.V. et al. Phase behavior of Pt−Cu nanoparticles with different architecture upon their thermal treatment // Nanotechnologies in Russia. 2017. V. 12. P. 147–155. https://doi.org/10.1134/S1995078017020033
  10. Banerjee M., Sharma S., Chattopadhyay A. et al. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration // Nanoscale. 2011. V. 3. № 12. P. 5120‒5125. https://doi.org/10.1039/C1NR10703H
  11. Alonso A., Vigués N., Muñoz-Berbel X. et al. Microbial growth inhibition caused by Zn/Ag‒Y zeolite materials with different amounts of silver // Colloids and Surfaces B: Biointerfaces. 2016. V. 142. P. 141‒147. https://doi.org/10.1016/j.colsurfb.2016.02.042
  12. Ferreira L., Guedes J.F., Almeida-Aguiar C. et al. Microbial growth inhibition caused by Zn/Ag−Y zeolite materials with different amounts of silver // Colloids and Surface 2016. V. 142. P. 141‒147. https://doi.org/10.1016/j.colsurfb.2016.02.042
  13. Markova Z., Šišková K.M., Filip J. et al. Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal // Environmental Science & Technology. 2013. V. 47. № 10. P. 5285‒5293. https://doi.org/10.1021/es304693g
  14. Taner M., Sayar N., Yulug I.G. et al. Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys // Journal of Materials Chemistry. 2011. V. 21. № 35. P. 13150‒13154. https://doi.org/10.1039/C1JM11718A
  15. Gupta A., Mumtaz S., Li C.H. et al. Combatting antibiotic-resistant bacteria using nanomaterials // Chemical Society Reviews 2019. V. 48. № 2. P. 415–427 https://doi.org/10.1039/C7CS00748E
  16. Rajchakit U., Sarojini V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles // Bioconjugate Chemistry. 2017. V. 15. № 28. P. 2673‒2686. https://doi.org/10.1021/acs.bioconjchem.7b00368
  17. Букина Ю.А., Сергеева Е.А. Антибактериальные свойства и механизм бактерицидного действия наночастиц и ионов серебра // Вестник Казанского технологического университета. 2012. Т. 15. № 14. С. 170‒172.
  18. Pillai P., Kowalczyk P.B., Kandere-Grzybowska K. et al. Engineering gram selectivity of mixed-charge gold nanoparticles by tuning the balance of surface charges // Angewandte Chemie International Edition. 2016. V. 55. № 30. P. 8610‒8614. https://doi.org/10.1002/anie.201602965
  19. Huo S., Jiang Y., Gupta A. et al. Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure // ACS Nano. 2016. V. 10. № 9. P. 8732‒8737. https://doi.org/10.1021/acsnano.6b04207
  20. Krishnan G., de Graaf S., Gert H. et al. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles // Nanoscale. 2017. V. 9. № 24. P. 8149‒8156. https://doi.org/10.1039/C7NR00916J
  21. Langlois C., Li Z.I., Yuan J. et al. Transition from core–shell to Janus chemical configuration for bimetallic nanoparticles // Nanoscale. 2012. V. 4. № 11. P. 3381‒3388. https://doi.org/10.1039/C2NR11954D
  22. Bakina O.V., Glazkova E.A., Svarovskaya N.V. et al. “Janus”-like Cu−Fe bimetallic nanoparticles with high antibacterial activity // Materials Letters. 2019. V. 242. P. 187‒190. https://doi.org/10.1016/j.matlet.2019.01.105
  23. Lozhkomoev A.S., Kazantsev S.O., Kondranova A.M. et al. Design of antimicrobial composite nanoparticles ZnxMe (100 – x)/O by electrical explosion of two wires in the oxygen-containing atmosphere // Materials & Design. 2019. V. 183. P. 108099. https://doi.org/10.1016/j.matdes.2019.108099
  24. Bakina O.V., Glazkova E.A., Pervikov A.V. et al. Electric explosion of wires as versatile method for antibacterial Janus-like ZnO–Ag nanoparticles preparation // J. Mater. Sci. Materials in Electronics. 2021. V. 32. P. 10623‒10634. https://doi.org/10.1007/s10854-019-01684-4
  25. Bakina O., Glazkova E., Pervikov A. et al. Design and preparation of silver–copper nanoalloys for antibacterial applications // Journal of Cluster Science. 2021. V. 32. P. 779‒786. https://doi.org/10.1007/s10876-020-01844-1
  26. Chace W.G. Exploding wires // Phisics Today. 1964. V. 17. № 8. P. 19. https://doi.org/10.1063/1.3051737
  27. Кузнецова А.С., Ермакова Л.Э., Антропова Т.В. и др. Химический состав, структура и электрокинетический потенциал никель- и железосодержащих стеклообразных материалов // Коллоидный журнал. 2021. Т. 83. № 3. С. 311‒319. https://doi.org/10.31857/S0023291221030101
  28. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review // Journal of Pharmaceutical Analysis. 2016. V. 6. № 2. P. 71‒79. https://doi.org/10.1016/j.jpha.2015.11.005
  29. Lerner M.I., Svarovskaya N.V., Psakhie S.G. et al. Production technology, characteristics, and some applications of electric-explosion nanopowders of metals // Na-notechnologies in Russia. 2009. V. 4. № 11–12. P. 741–757. https://doi.org/10.1088/09574484/27/20/205603
  30. Диаграммы состояния двойных металлических систем / под общей редакцией Лякишева. Т. 1. М.: Машиностроение, 1996. 996 с.
  31. Чудненко К.В., Пальянова Г.А. Термодинамические свойства твердых растворов в системе Ag–Au–Сu // Геология и геофизика. 2014. Т. 55. № 3. С. 449‒463.
  32. Liu X., Wu Y., Xie G. et al. New green soft chemistry route to Ag−Cu bimetallic nanomaterials // International Journal of Electrochemical Science. 2017. V. 12. P. 3275‒3282. https://doi.org/10.20964/2017.04.61
  33. Williamson G.K., Hall W.H. X-ray line broadening from filed aluminium and wolfram // Acta Metallurgica. 1953. V. 1. P. 22‒31. https://doi.org/10.1016/0001-6160(53)90006-6
  34. Kushwah M., Gaur M.S., Berlina A.N. et al. Biosynthesis of novel Ag@ Cu alloy NPs for enhancement of methylene blue photocatalytic activity and antibacterial activity // Materials Research Express. 2019. V. 6. № 11. P. 116561. https://doi.org/10.1088/2053-1591/ab485e
  35. Ni Z., Wan M., Tang G. et al. Synthesis of CuO and PAA-regulated silver-carried CuO nanosheet composites and their antibacterial properties // Polymers. 2022. V. 14. № 24. P. 5422. https://doi.org/10.3390/polym14245422
  36. Kaushik V.K. XPS core level spectra and Auger parameters for some silver compounds // Journal of Electron Spectroscopy and Related Phenomena. 1991. V. 56. № 3. P. 273‒277. https://doi.org/10.1016/0368-2048(91)85008-H
  37. Rajendran R., Mani A. Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles // Journal of Saudi Chemical Society. 2020. V. 24. № 12. P. 1010‒1024. https://doi.org/10.1016/j.jscs.2020.10.008
  38. Parvin T., Keerthiraj N., Ibrahim I.A. et al. Photocatalytic degradation of municipal wastewater and brilliant blue dye using hydrothermally synthesized surface-modified silver-doped ZnO designer particles // International Journal of Photoenergy. 2012. V. 2012. P. 670610. https://doi.org/10.1155/2012/670610
  39. Chan Y.Y., Pang Y.L., Lim S. et al. Biosynthesized Fe-and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn for enhancement of sonocatalytic degradation of Congo red // Environmental Science and Pollution Research. 2020. V. 27. P. 34675‒34691. https://doi.org/10.1007/s11356-019-06583-z
  40. Azouri A., Ge, M., Xun K. et al. Zeta potential studies of titanium dioxide and silver nanoparticle composites in water-based colloidal suspension // Multifunctional Nanocomposites and Nanomaterials International Conference. 2008. V. 47616. P. 221–223. https://doi.org/10.1115/MN2006-17072
  41. Ren Y., Wang C., Chen Z. et al. Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing // FEMS Microbiology Reviews. 2018. V. 42. № 3. P. 259‒272. https://doi.org/10.1093/femsre/fuy001

补充文件

附件文件
动作
1. JATS XML
2.

下载 (415KB)
3.

下载 (684KB)
4.

下载 (659KB)
5.

下载 (832KB)
6.

下载 (113KB)
7.

下载 (424KB)
8.

下载 (103KB)
9.

下载 (24KB)
10.

下载 (57KB)
11.

下载 (99KB)
12.

下载 (81KB)
13.

下载 (177KB)


##common.cookie##