INTERACTION OF PLATINUM NANOPARTICLES SYNTHESIZED ON GRAPHITE WITH NITROUS OXIDE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heterogeneous catalytic reactions involving nitrous oxide (N2O) are of great interest for medicine, technology, and ecology. The goal of this work is to determine the features of adsorption of N2O molecules followed by their interaction with a catalytic system based on metal nanoparticles at room temperature. Scanning tunneling microscopy and spectroscopy, as well as Auger spectroscopy, have been employed to identify the results and products of the adsorption of nitrous oxide on the surface of individual Pt nanoparticles synthesized on highly oriented pyrolytic graphite. It has been shown that, at short exposures, oxygen atoms
resulting from dissociative adsorption oxidize the surface of nanoparticles only near the platinum–graphite interface. As the exposure increases, the entire surface of the nanoparticles is covered with oxide. Thus, it has been shown that the adsorption properties of the surface of the platinum nanoparticles on graphite are not the same, and this fact provides the possibility to carry out different chemical reactions on different surface regions, thereby increasing the efficiency of the catalytic system as a whole.

About the authors

D. BAIMUKHAMBETOVA

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина 4; Россия, 14170 1, Московская область, Долгопрудный, Институтский пер. 9

A. K. GATIN

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина 4

S. A. OZERIN

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина 4

M. V. GRISHIN

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина 4

References

  1. Knuf K., Maani C.V. Nitrous Oxide. https://www.ncbi. nlm.nih.gov/books/NBK532922.
  2. Murray M.J., Murray W.J. Nitrous oxide availability // The Journal of Clinical Pharmacology. 1980. V. 20. № 4. P. 202–205. https://doi.org/10.1002/j.1552-4604.1980.tb01697.x
  3. Wang Z.-C., Yan Y., Fang Z., Nisar T., Sun L., Guo Y., Xia N., Wang H., Chen D.-W. Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets // Food Control. 2019. V. 98. P. 209–215. https://doi.org/10.1016/j.foodcont.2018.11.043
  4. Zakirov V., Sweeting M., Lawrence T., Sellers J. Nitrous oxide as a rocket propellant // Acta Astronautica. 2001. V. 48. № 5–12. P. 353–362. https://doi.org/10.1016/S0094-5765(01)00047-9
  5. Müller R. The impact of the rise in atmospheric nitrous oxide on stratospheric ozone // Ambio. 2021. V. 50. № 1. P. 35–39. https://doi.org/10.1007/s13280-020-01428-3
  6. Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A. Heterogeneous catalytic decomposition of nitrous oxide // Applied Catalysis B: Environmental. 1996. V. 9. № 1–4. P. 25–64. https://doi.org/10.1016/0926-3373(96)90072-7
  7. Centi G., Perathoner S., Vazzana F., Marella M., Tomaselli M., Mantegazza M. Novel catalysts and catalytic technologies for N2O removal from industrial emissions containing O2, H2O and SO2 // Advances in Environmental Research. 2000. V. 4. № 4. P. 325–338. https://doi.org/10.1016/S1093-0191(00)00032-0
  8. Santiago M., Hevia M.A.G., Pérez-Ramírez J. Evaluation of catalysts for N2O abatement in fluidized-bed combustion // Applied Catalysis B: Environmental. 2009. V. 90. № 1–2. P. 83–88. https://doi.org/10.1016/j.apcatb.2009.02.017
  9. Li Yu., Armor J.N. Catalytic decomposition of nitrous oxide on metal exchanged zeolites // Applied Catalysis B: Environmental. 1992. V. 1. № 3. P. L21–L29. https://doi.org/10.1016/0926-3373(92)80019-V
  10. Centi G., Galli A., Montanari B., Perathoner S., Vaccaria A. Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity // Catalysis Today. 1997. V. 35. № 1–2. P. 113–120. https://doi.org/10.1016/S0920-5861(96)00137-X
  11. Liu Z., Amiridis M.D., Chen Y. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2 // The Journal of Physical Chemistry B. 2005. V. 109. № 3. P. 1251–1255. https://doi.org/10.1021/jp046368q
  12. Xu X., Xu H., Kapteijn F., Moulijn J.A. SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants // Applied Catalysis B: Environmental. 2004. V. 53. № 4. P. 265–274. https://doi.org/10.1016/j.apcatb.2004.04.023
  13. Smeets P.J., Sels B.F., van Teeffelen R.M., Leeman H., Hensen E.J.M., Schoonheydt R.A. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen // Journal of Catalysis. 2008. V. 256. № 2. P. 183–191. https://doi.org/10.1016/j.jcat.2008.03.008
  14. Kim M.H., Ebner J.R., Friedman R.M., Vannice M.A. Dissociative N2O adsorption on supported Pt // Journal of Catalysis. 2001. V. 204. P. 348–357. https://doi.org/10.1006/jcat.2001.341
  15. Habraken F.H.P.M., Kieffer E.P., Bootsma G.A. A study of the kinetics of the interactions of O2 and N2O with a Cu(111) surface and of the reaction of CO with adsorbed oxygen using aes, LEED and ellipsometry // Surface Science. 1979. V. 83. № 1. P. 45–59. https://doi.org/10.1016/0039-6028(79)90479-5
  16. Avery N.R. An EELS study of N2O adsorption on Pt(111) // Surface Science. 1983. V. 131. № 2–3. P. 501–510. https://doi.org/10.1016/0039-6028(83)90294-7
  17. Kim M.H., Kim D.H. Low-temperature reduction of N2O by H2 over Pt/SiO2 catalysts // Journal of Environmental Science International. 2013. V. 22. № 1. P. 73–81. https://doi.org/10.5322/JES.2013.22.1.73
  18. Guntherodt H.-J., Wiesendanger R. Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-covered Surfaces. Berlin: Springer-Verlag Berlin, Heidelberg, 1992. https://doi.org/10.1007/978-3-642-97343-7
  19. Jin Z., Xi C., Zeng Q., Yin F., Zhao J., Xue J. Catalytic behavior of nanoparticle α-PtO2 for ethanol oxidation // Journal of Molecular Catalysis A: Chemical. 2003. V. 191. № 1. P. 61–66. https://doi.org/10.1016/S1381-1169(02)00029-8
  20. Canart-Martin M.C., Delrue J.P., Laude L.D., Wautelet M. Electronic structure and reduction processes in PtOx films // Chemical Physics. 1980. V. 48. № 2. P. 283–288. https://doi.org/10.1016/0301-0104(80)80058-9
  21. Neff H., Henkel S., Hartmannsgruber E., Steinbeiss E., Michalke W., Steenbeck K., Schmidt H. Structural, optical, and electronic properties of magnetronsputtered platinum oxide films // Journal of Applied Physics. 1996. V. 79. № 10. P. 7672–7675. https://doi.org/10.1063/1.362341
  22. Uddin J., Peralta J.E., Scuseria G.E. Density functional theory study of bulk platinum monoxide // Physical Review B. 2005. V. 71. № 15. P. 155112. https://doi.org/10.1103/PhysRevB.71.155112
  23. Kaewmaraya T., Ramzan M., Sun W., Sagynbaeva M., Ahuja R. Atomistic study of promising catalyst and electrode material for memory capacitors: Platinum oxides // Computational Materials Science. 2013. V. 79. P. 804–810. https://doi.org/10.1016/j.commatsci.2013.07.021
  24. Gatin A.K., Grishin M.V., Dokhlikova N.V., Sarvadii S.Yu., Shub B.R. Hydrogenation of HOPG-supported gold nanoparticles: Features of initial stages // Crystals. 2019. V. 9. № 7. P. 350. https://doi.org/10.3390/cryst9070350
  25. Gatin A.K., Sarvadii, S.Y., Dokhlikova N.V., Kharitonov V.A., Ozerin S.A., Shub B.R., Grishin M.V. Oxidation of supported nickel nanoparticles at low exposure to O2: Charging effects and selective surface activity // Nanomaterials. 2022. V. 12. № 7. P. 1038. https://doi.org/10.3390/nano12071038
  26. Гатин А.К., Дохликова Н.В., Мухутдинова Р.Г., Озерин С.А., Гришин М.В. Особенности взаимодействия окисленных наночастиц платины с молекулярным водородом и монооксидом углерода // Коллоид. журн. 2022. Т. 84. № 6. С. 705–714. https://doi.org/10.31857/S0023291222600110
  27. Дубков К.А., Панов Г.И., Пармон В.Н. Оксид азота(I) как селективный окислитель в реакциях кетонизации двойных связей C=C органических соединений // Успехи химии. 2017. Т. 86. № 6. С. 510–529. https://doi.org/10.1070/RCR4697?locatt=label:RUSSIAN
  28. Haynes W.M. CRC Handbook of Chemistry and Physics, 97th ed. CRC Press: Boca Raton, FL, USA, 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (917KB)
3.

Download (1MB)
4.

Download (980KB)
5.

Download (660KB)
6.

Download (651KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies