Thermal resistance measurement methods for protective Arctic clothing
- 作者: Yashin S.R.1
-
隶属关系:
- ITMO University
- 期: 卷 113, 编号 4 (2024)
- 页面: 176-187
- 栏目: Reviews
- URL: https://journals.rcsi.science/0023-124X/article/view/357962
- DOI: https://doi.org/10.17816/RF678557
- EDN: https://elibrary.ru/MMFJOX
- ID: 357962
如何引用文章
详细
The paper describes methods for measuring the thermal resistance of protective clothing intended for use in extreme Arctic conditions. It discusses conventional approaches, such as calorimetry and thermal manikins testing, and contemporary techniques, including infrared thermography, computer modeling, and smart textile sensors. Key issues related to the discrepancy between laboratory data and real-life operating conditions are identified, including the influence of wind load, high humidity, and temperatures below −50 °C. The paper analyzes the limitations of applicable standards (GOST 12.4.303-2016, ISO 15831:2004) proposes ways to improve them, including the introduction of correction factors to consider hybrid climatic factors. The paper focuses on promising areas, such as the integration of artificial intelligence for data analysis, the development of nanostructured insulation, and the harmonization of Russian standards with international requirements. It highlights the need for an interdisciplinary approach combining materials science, climate science, and digital technologies to improve the safety and performance of protective clothing in the context of increasing human impact on Arctic regions.
作者简介
Sergey Yashin
ITMO University
编辑信件的主要联系方式.
Email: yashins27@mail.ru
ORCID iD: 0009-0001-5932-7783
俄罗斯联邦, Saint Petersburg
参考
- Talykova LV, Bykov VR. Study of the effects of professional exposure in the Arctic zone. Russ Arct. 2021;14:41–53. doi: 10.24412/2658-4255-2021-3-00-04
- Wang F, Gao Ch, Kuklane K. A review of technology of personal heating garments. Int J Occup Saf Ergon. 2010;16(3):387–404. doi: 10.1080/10803548.2010.11076854 EDN: OEATFR
- Havenith G, Holmér I, Parsons K. Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build. 2002;34(6):581–591. doi: 10.1016/S0378-7788(02)00008-7
- Hasan KMF, Bai S, Chen S, et al. Nanotechnology-empowered radiative cooling and warming textiles. Cell Rep Phys Sci. 2024;5(9):102108. doi: 10.1016/j.xcrp.2024.102108 EDN: HFLWFL
- Zhang Q, Cheng H, Zhang Sh, et al. Advancements and challenges in thermoregulating textiles: smart clothing for enhanced personal thermal management. Chem Eng J. 2024;488:151040. doi: 10.1016/j.cej.2024.151040 EDN: XDLOWJ
- Havenith G, Holmér I, Parsons K. Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build. 2002;34(6):581–591. doi: 10.1016/S0378-7788(02)00008-7
- BASK Company. Technologies. Accessed May 15, 2025. Available from: https://bask.ru/technologies/
- Galkin AF. Equivalent thermal resistance of road surfaces. Arct Antarct. 2022;(3):129–138. doi: 10.7256/2453-8922.2022.3.38777 EDN: HNHLEU
- Jussila K, Rissanen S, Aminoff A, et al. Thermal comfort sustained by cold protective clothing in Arctic open-pit mining—a thermal manikin and questionnaire study. Ind Health. 2017;55(6):537–548. doi: 10.2486/indhealth.2017-0154 EDN: XXNPKX
- Shamparov EY, Zhagrin IN, Popova VV. Comprehensive study of thermal protection properties of a package of materials for special clothing. Mater Technol. 2020. doi: 10.24412/2617-149X-2020-2-33-37
- Sovetnikov DA. Development of a package of materials for special clothing for military personnel in the Arctic [dissertation] Moscow; 2017.
- Shen H, An Y, Zhang H, et al. 3D numerical investigation of the heat and flow transfer through cold protective clothing based on CFD. Int J Heat Mass Transf. 2021;175:121305. doi: 10.1016/j.ijheatmasstransfer.2021.121305 EDN: LYKQQQ
- Gribova EV. Development of an express method for determining the thermal insulation properties of nonwoven materials [dissertation] Moscow; 2022.
- Bogdanov VF. Development of methods for designing and monitoring thermal protection of sleeping bags with down insulation [dissertation] Shakhty; 2023.
- Kolesnikov PA. Thermal Protective Properties of Clothing. Moscow: Legkaya promyshlennost; 1965.
- Su Y, Fan Y, Liu G, et al. A review on sustainable method to evaluate heat and moisture transfer in clothing material. Sustainability. 2023;15:2747. doi: 10.3390/su15032747 EDN: PRJIMW
- Cherunova I, Kornev N, Lukyanova E, Varavka V. Development and study of the structure and properties of a composite textile material with encapsulated heat-preserving components for heat-protective clothing. Appl Sci. 2021;11:5247. doi: 10.3390/app11115247 EDN: SJJFNK
- Klimova NA. Forecasting the properties of temperature-regulating materials and designing heat-protective product packages [dissertation] Moscow; 2021.
- Atalie D, Tesinova P, Tadesse MG, et al. Thermo-physiological comfort properties of sportswear with different combination of inner and outer layers. Materials. 2021;14:6863. doi: 10.3390/ma14226863 EDN: BPKIJT
- Howie N, Rabey S. A meta-analysis on the advancement of the thermodynamic properties of clothing in extreme cold environments. PAM Rev. 2019;6. doi: 10.5130/pamr.v6i0.1548



