Selection of refrigerant for use in chillers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Chillers (chillers) are essential components in various industrial processes. They are primarily used when direct cooling through direct heat exchange between the boiling coolant and the cooled medium is not feasible. This could be attributed to the cost of the refrigerant, especially when a large amount of expensive substances for long refrigerant lines is needed, or the risks associated with using toxic and flammable refrigerants, which could be hazardous in case of leaks. Chillers are typically classified into three types based on their temperature applications: high-temperature chillers for uses like plastic manufacturing and data centers, medium-temperature chillers for air conditioning systems, etc.) and low-temperature chillers for applications like ice fields and food storage.

Given their widespread use and high production volume, designing efficient chillers is an important task.

AIMS: Substantiating refrigerant use in terms of efficiency and service life of refrigeration equipment.

MATERIALS AND METHODS: Chillers are designed for various industrial applications, with specific inlet and outlet temperatures for the evaporator: +26°С / + 20°С (ВТ); +12°С / +7°С (ST); −10°С / −13°С (НТ)). These chillers operate using refrigerants R134a, R410A, R404A, and R1270, evaluated through an entropy-statistical method of thermodynamic analysis [1]. R1270 is highlighted as a promising refrigerant for monoblock chillers, since there are no filling restrictions for these chillers when installed in open space [2].

RESULTS: Among the refrigerant reviewed, R1270 demonstrates the highest thermodynamic efficiency in BT mode, outperforming R404A by 11.97%, R134a by 2.15%, and R410A by 5.48%.

In CT mode, R1270 also leads,–with a 14.13% advantage over R404A, 3.04% over R134a, and 3.41% over R410A.

Similarly, in HT mode, R1270 shows superior thermodynamic performance, being 21.95% more efficient than R404A, 29.73% more than R134a, and 11.44% more than R410A.

The use of R410A and R134a in NT mode is limited owing to high discharge temperatures during compression, namely 116.94°C for R410A and 114.63°C for R134a, potentially reducing equipment lifespan. The lowest discharge temperature during actual compression, 84.63°C, is achieved using R404A coolant. However, despite its efficiency, this refrigerant results in a relatively high discharge temperature of 96.84°C.

CONCLUSIONS: The analysis highlights specific applications for various refrigerants in chillers and underscores the potential of natural refrigerant R1270, which is produced in the Russian Federation.

About the authors

Maxim S. Talyzin

International Academy of Refrigeration

Author for correspondence.
Email: talyzin_maxim@mail.ru
ORCID iD: 0000-0001-7244-1946
SPIN-code: 6524-3085

Academician, Cand. Sci. (Eng.)

Russian Federation, Moscow

Andrey V. Skolov

LLC «Lekma Holod»

Email: skolov@lekmaholod.ru
Russian Federation, Rostov-on-Don

References

  1. Arkharov AM. Fundamentals of cryology. Entropy-statistical analysis of low-temperature systems. Moscow: MGTU im NE Baumana. 2014. (In Russ).
  2. Talyzin MS, Ponomarev VG. Application of nature refrigerants in refrigeration plants. Chemical and Petroleum Engineering. 58;11–12. doi: 10.1007/s10556-023-01197-2
  3. Talyzin MS. Alternative Refrigerants - Challenges and Prospects. Milk Industry. 2021;12:36–37. (In Russ).
  4. Shishov VV, Talyzin MS. Efficiency of refrigeration equipment on natural refrigerants // Chemical and Petroleum Engineering. 2020;56(5–6):385–392.
  5. Yelishala SC, Kannaiyan K, Wang Z, et al. Thermodynamic Study on Blends of Hydrocarbons and Carbon Dioxide as Zeotropic Refrigerants. Energy Resour. Technol. 2020;142(8). https://doi.org/10.1115/1.4045930

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Circuit diagram of the cycle. KM — compressor, Prz — condenser, I — evaporator, RV — control valve.

Download (78KB)
3. Fig. 2. Distribution of power losses in chiller elements at HT, kW.

Download (76KB)
4. Fig. 3. Distribution of power losses in chiller elements at MT, kW.

Download (70KB)
5. Fig. 4. Distribution of power losses in chiller elements at LT, kW.

Download (64KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».