Study of nonequilibrium regenerative heat exchange in positive displacement compressors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: An important task in the design of thermal engines is the evaluation of power losses in different processes to determine the installation efficiency. One of the processes that generates power losses in the compressor is the process of nonequilibrium regenerative heat exchange (NRHE) of the compressed gas with the working cavity walls. This heat exchange occurs at a significant temperature difference, which can lead to noticeable power losses. Modern compressor design methods do not consider losses from nonequilibrium regenerative heat exchange and do not describe them separately from other types of losses.

AIM: This study investigates the mechanism of losses during regenerative heat exchange between the gaseous working flow out and the working cavity walls and evaluates the scale of these losses.

METHODS AND RESULTS: This work provides a qualitative description of the mechanism for the formation of losses from NRHE. As a result of solving the problem of unsteady thermal conductivity, an analytical expression for calculating such losses is derived based on the Gouy-Stodola theorem.

CONCLUSIONS: The study revealed that power losses from NRHE account for a significant share in the overall balance of machine losses. Parameters influencing the magnitude of these losses were also determined, and recommendations were developed to reduce them.

About the authors

Artem V. Borisenko

Bauman Moscow State Technical University

Author for correspondence.
Email: borart@bmstu.ru
ORCID iD: 0000-0002-4818-3702
SPIN-code: 2859-5006

Cand. Sci. (Tech.)

Russian Federation, Moscow

Anton A. Zharov

Bauman Moscow State Technical University

Email: zharov_a@bmstu.ru
ORCID iD: 0000-0001-9945-0850
SPIN-code: 8581-1809

Cand. Sci. (Tech.)

Russian Federation, Moscow

Anna V. Valiakina

Bauman Moscow State Technical University

Email: avaliakyna@rambler.ru
ORCID iD: 0000-0002-7709-1209
SPIN-code: 7679-2022

Cand. Sci. (Tech.)

Russian Federation, Moscow

References

  1. Kondrat’eva TF, Plastinin PI . Piston Compressor Machines. Chemical and Petroleum Engineering. 1971; 7 (9): 749–750. doi: 10.1007/BF01143289
  2. Harding EC. Positive Displacement Compressors. General Engineer. 1985; 96 (10): 290-303.
  3. Budagyan AP, Plastinin PI. Optimization of Reciprocating Compressors. Chemical and Petroleum Engineering. 1981; 17 (3): 142–144. doi: 10.1007/BF01157950
  4. Arkharov AM, Semenov VY. Analysis of Thermodynamic Efficiency of Small-Scale Natural Gas Liquefying Plant Operating on Medium-Pressure Cycle. Chemical and Petroleum Engineering. 2016; 51 (9–10): 656-664. doi: 10.1007/s10556-016-0102-z
  5. Kolosov MA, Borisenko AV, Manylov VV et al. Losses of Power in Thermal Engines in Nonequilibrium Regenerative Heat Exchange. Chemical and Petroleum Engineering. 2018; 54 (3–4): 239–246. doi: 10.1007/s10556-018-0469-0
  6. Arkharov AM, Arkharov IA, Beliakov VP et al. Cryogenic systems Vol. 2: Design of Apparatus, Plants System. Moscow: Bauman Moscow State Technical University Press; 2001.
  7. Arkharov AM, Marfenina, IV, Mikulin YeI. Cryogenic Systems Vol. 1: Basis of Theory and Design. Moscow: Bauman Moscow State Technical University Press; 2000.
  8. Stodola A. Steam and gas turbines. New York City: P. Smith; 1945.
  9. Kolosov MA. Theorem of Ideal Cycles of Refrigerating Machines. Chemical and Petroleum Engineering. 2016; 51 (9–10):674–682. doi: 10.1007/s10556-016-0104-x
  10. Arnold VI. Mathematical Methods of Classical Mechanics. Berlin: Springer-Verlag; 1989.
  11. Arkharov AM. Analysis of Energy Systems in a Single Thermodynamic Temperature Field. Chemical and Petroleum Engineering. 2010; 46 (1): 17–24. doi: 10.1007/s10556-010-9283-z
  12. Kolosov MA. The Guoy–Stodola Theorem Applied to Refrigeration Engineering. Kholod. Tekh. 2013; 8:40–44. EDN: SMJSFR [in Russian].
  13. Arkharov AM, Butkevich KS, Butkevich IK et al. Cryogenic Piston Expanders. Moscow: Mashinostroenie. 1974. [in Russian].
  14. Holmal JP. Heat Transfer. MacGraw-Hill. 2010.
  15. Kudinov IV, Kudinov VA. Mathematical simulation of the locally nonequilibrium heat transfer in a body with account for its nonlocality in space and time. Journal of Engineering Physics and Thermophysics. 2015;88 (2):406–422. doi: 10.1007/s10891-015-1206-6
  16. Bubnov VA. Remarks on wave solutions of the nonlinear heatconduction equation. Journal of engineering physics. 1981;40 (5): 565–571. doi: 10.1007/BF00822128
  17. Lykov AV. Application of the Methods of Thermodynamics of Irreversible Processes to Investigation of the Heat and Mass Transfer. Inzhenerno Fizicheskii Zhurnal. 1965;9 (3):287–304. doi: 10.1007/BF00828333
  18. Novikov II, Evko LS, Fotin BS et al. Trends in the Development of Piston Compressors. Chemical and Petroleum Engineering. 1981;17 (9): 462–465. doi: 10.1007/BF01148521
  19. Voronov VA, Leonov VP . Testing of a Scroll Expander in Various Modes. Chemical and Petroleum Engineering. 2015;51 (1–2):33–36. doi: 10.1007/s10556-015-9993-3
  20. Ivlev VI, Bozrov VM, Voronov VA. Testing a scroll machine in pneumatic motor-expander modes. Journal of Machinery Manufacture and Reliability. 2015;44(2):120–124. doi: 10.3103/S1052618815020053

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic indicator diagram showing the direction of heat flow: BDC and TDC — bottom and top dead centers, respectively; psuc, pdis — suction and discharge pressures, respectively; V–h — the described volume per crankshaft revolution.

Download (66KB)
3. Fig. 2. Mechanism of entropy generation in the process of nonequilibrium regenerative heat exchange.

Download (45KB)
4. Fig. 3. Qualitative nature of the change in gas temperature Tg and inner surface of the working cavity Ts.

Download (66KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».