CFD-based design algorithm for CO2 ejectors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, a novel CFD-database generation algorithm for CO2 ejectors is presented. The algorithm is explained and its details discussed. A case for CFD database generation is then performed based on an ejector design for an industry client. The ejector design is investigated with different design parameters around the suggested design. Design improvements are suggested based on the numerical results, and a final design is suggested. The final design had a high ejector efficiency of simulated to be 46% at the design point, and the ejector performance is evaluated and discussed for off-design conditions.

About the authors

Knut Ringstad

Norwegian University of Science and Technology

Author for correspondence.
Email: knut.e.ringstad@ntnu.no
Norway, Trondheim

Krzysztof Banasiak

SINTEF Energy

Email: knut.e.ringstad@ntnu.no
Norway, Trondheim

Armin Hafner

Norwegian University of Science and Technology

Email: knut.e.ringstad@ntnu.no
Norway, Trondheim

References

  1. Elbel S, Lawrence N. Review of recent developments in advanced ejector technology. International Journal of Refrigeration. 2016;62:1–18. doi: 10.1016/j.ijrefrig.2015.10.031
  2. He Y, Deng J, Li Y, Ma L. A numerical contrast on the adjustable and fixed transcritical CO2 ejector using exergy flux distribution analysis. Energy Conversion and Management. 2019;196:729–738. doi: 10.1016/j.enconman.2019.06.031
  3. Ringstad KE, Allouche Y, Gullo P, et al. A detailed review on CO2 twophase ejector flow modeling. Thermal Science and Engineering Progress. 2020;20:100647. doi: 10.1016/j.tsep.2020.100647.
  4. Palacz M, Smolka J, Kus W, et al. CFDbased shape optimisation of a CO2 two-phase ejector mixing section. Applied Thermal Engineering. 2016;95:62–69. doi: 10.1016/j.applthermaleng.2015.11.012
  5. Palacz M, Smolka J, Nowak AJ, et al. Shape optimisation of a two-phase ejector for CO2 refrigeration systems. International Journal of Refrigeration. 2017;74:210–221. doi: 10.1016/j.ijrefrig.2016.10.013
  6. He Y, Deng J, Li Y, Zhang X. Synergistic effect of geometric parameters on CO2 ejector based on local exergy destruction analysis. Applied Thermal Engineering. 2021;184:116256. doi: 10.1016/j.applthermaleng.2020.116256
  7. Banasiak K, Palacz M, Hafner A, et al. A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: An irreversibility analysis. International Journal of Refrigeration. 2014;40:328–337. doi: 10.1016/j.ijrefrig.2013.12.002
  8. Smolka J, Bulinski Z, Fic A, et al. A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach. Applied Mathematical Modelling. 2013;37:1208–1224. doi: 10.1016/j.apm.2012.03.044

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Database layout.

Download (88KB)
3. Fig. 2. Graphical user interface.

Download (238KB)
4. Fig. 3. Velocity distribution in mixer and diffuser at different pressure lifts.

Download (278KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).