Mathematical modeling of the rotor dynamics of a turbomachine on gas foil bearings subjected to vibration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The use of gas foil bearings is a promising development in the field of turbomachinery due to their economy, autonomous operation capability, and durability. However, gas foil bearings have lower load capacities than other types of bearings. However, turbomachines are complicated, dynamic systems that must meet high standards of safety, sustainability, and durability against external mechanical factors like vibration, shock, etc.

AIM: Development of a mathematical model of rotor dynamics to predict the displacement of the rotor in foil bearings for maintaining separation between the rotor and the housing while being subjected to vibration.

METHODS: A mathematical model of the dynamics of a stiff rotor on gas foil bearings was built and analyzed, taking into account the flexibility of the bearing bushing supports and the housing of the turbomachine. Stationary and transient modes of operation, including the transient modes combined with random vibration, are simulated. The system of ordinary derivatives equations describing the mathematical model was solved by the Rado IIA method. Random vibration was modeled using digital Fourier transformation. The modeling results were analyzed by discrete Fourier transformation and short-time Fourier transformation.

RESULTS AND CONCLUSIONS: Rotor movement trajectories were obtained and the results were compared with author’s previous experimental data. Upper bound of maximal displacements was obtained. The maximum values of rotor displacement can be used to set the optimal values of blade tip gaps.

About the authors

Vitaly S. Nikolaev

Bauman Moscow State Technical University; PJSC NPO Nauka

Author for correspondence.
Email: vs.nikolaev.bmstu@gmail.com
ORCID iD: 0000-0002-5360-9368
SPIN-code: 5847-3632

Postgraduate Student

Russian Federation, Moscow; Moscow

Igor V. Tishchenko

Bauman Moscow State Technical University; PJSC NPO Nauka

Email: iv.tischenko@bmstu.ru
ORCID iD: 0000-0001-6094-8723
SPIN-code: 5630-4301

Cand. Sci. (Tech.), Associate Professor

Russian Federation, Moscow; Moscow

References

  1. Sukhomlinov IYa, Golovin MV Hermetic centrifugal refrigeration compressor on the gas-dynamic bearings. Compressor technology and pneumatics. 2014;6:6–10. (in Russ).
  2. Polikarpov AV, Vikulov AP, Zotov SN, et al. Oilfree centrifugal electric compressor with foil gasdynamic bearings. Refrigeration Technology. 2020;109(2):36–44. doi: 10.17816/RF104085 (in Russ).
  3. Shchedukhin SI, Polikarpov AV, Vikulov AP, et al. Bezmaslyanyy turbodetander prirodnogo gaza na lepestkovykh gazodinamicheskikh podshipnikakh. Refrigeration Technology. 2017;106(6):46–51. doi: 10.17816/RF99254 (in Russ).
  4. Zvonarev PN. Razrabotka metoda rascheta radial’nyh uprugogazdinamicheskih podshipnikov s predvaritel’no naprjazhennymi lepestkami dlja malyh turbomashin nizkotemperaturnyh ustanovok [dissertation] Moscow; 2005. (in Russ).
  5. Sytin AV. Reshenie kompleksnoj zadachi rascheta harakteristik radial’nyh lepestkovyh gazodinamicheskih podshipnikov [dissertation]. Orel; 2008. (in Russ).
  6. Bonello P, Pham H. The efficient computation of the nonlinear dynamic response of a foil air bearing rotor system. J. Sound Vibr. 2014;333:3459–3478. doi: 10.1016/j.jsv.2014.03.001
  7. Andrés LS, Rubio D, Kim TH. Rotordynamic performance of a rotor supported on bump type foil gas bearings: experiments and predictions. ASME J. Eng. Gas Turbines Power. 2007;129(3):850–857. doi: 10.1115/1.2718233
  8. Powell JW, Tempest MC A Study of High Speed Machines with rubber Stabilized Air Bearings. ASME J. Lubric. tech. 1968;90(4):701–707. doi: 10.1115/1.3601702
  9. Waumans T, Peirs J, Al-Bender F, et al. Aerodynamic journal bearing with a flexible, damped support operating at 7.2 million DN. J. Micromech. Microeng. 2011;21:104014. doi: 10.1088/0960-1317/21/10/104014
  10. Gu Y, Ma Y, Ren G. Stability and vibration characteristics of a rotor-gas foil bearings system with high-static-low-dynamic-stiffness supports. J. Sound Vibr. 2017;397:152–170. doi: 10.1016/j.jsv.2017.02.047
  11. Peshti YV. Gas lubricant. Moscow: Bauman Moscow State Technical University; 1993. (in Russ).
  12. Kim D. Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions. J. Trib. 2007;129(2):354–364 doi: 10.1115/1.2540065
  13. Wanner G, Hairer E. Solving ordinary differential equations II. Stiff and differential algebraic problems. Moscow: Mir; 1999.
  14. Tishchenko IV, Nikolaev VS, Merkulov VI. Experimental Study of a Dynamics Rotor of an Aircraft Air Cycle Machine with Foil Gas Bearings. In: Refrigeration and cryogenic equipment, air conditioning and life support systems: Third international scientific and practical conference. November 19–20, 2019; Moscow, Russia. Bauman Moscow State Technical University.
  15. Nikolaev VS, Abalakin SA, Tishchenko IV. Comparison of efficiency losses due to leaks for turbine units of aviation air conditioning systems with petal-type gas-dynamic bearings and ball bearings. Refrigeration Technology. 2022;111(1):13–20. doi: 10.17816/RF96964

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Rotor–gas foil bearings–bearings bushings system.

Download (170KB)
3. Fig. 2. Physical model of a radial bearing.

Download (342KB)
4. Fig. 3. Air cycle machine with the test fixture for attachment to a shaker, and the dynamic scheme of housing.

Download (243KB)
5. Fig. 4. Scheme diagram of the axial bearings. Axial bearings are presented as nonfixed equivalent springs to prevent axial movement and rotation.

Download (159KB)
6. Fig. 5. Trajectory of rotor side A motion without any outside impact: a) rotor rotation = 20 krpm, b) rotor rotation = 30 krpm.

Download (228KB)
7. Fig. 6. Trajectory of rotor side B motion without any outside impact a) rotor rotation = 20 krpm, b) Rotor rotation = 30 krpm.

Download (270KB)
8. Fig. 7. Rotor side B response to the influence of a sinusoidal vibration of scanning frequency with vibroacceleration amplitude of 0.5 g. Rotor rotation = 26 krpm. Top: experimental data, bottom: computed data.

Download (422KB)
9. Fig. 8. Trajectory of rotor motion under the combined effect of sinusoidal and random vibration, 25% of the nominal regime. Left – computed data, right – experimental data. Top – side of support A, bottom – side of support B.

Download (238KB)

Copyright (c) 2022 Nikolaev V.S., Tishchenko I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).