Measurement of Photoelectrophysical Characteristics of Conductive Layers of CsPbBr3 Colloidal Quantum Dots

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Colloidal quantum dots of perovskites having the chemical composition CsPbBr3 have been synthesized. For these particles, the average size of an ensemble of particles and sample polydispersity have been determined by steady-state spectrofluorometry. Conducting layers were made from the obtained particles, and the electrophysical characteristics of these layers were measured. The hole nature of the conductivity was
established, and the layer conductivity (0.04 S/m), mobility (0.8 cm2/(V s)), and number concentration of free charge carriers (3.01 × 1021 m−3) were measured. In accordance with published data, the measured mobility value is higher by one to two orders of magnitude than published typical values. It is shown that high polydispersity has a weak effect on the electrophysical and transport characteristics in the resulting layers.

作者简介

D. Pevtsov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: pevtsov.dn@phystech.edu
Chernogolovka, Moscow oblast, 142432 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia

G. Lochin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: pevtsov.dn@phystech.edu
Chernogolovka, Moscow oblast, 142432 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia

A. Katsaba

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute, Russian Academy of Sciences

Email: pevtsov.dn@phystech.edu
Dolgoprudnyi, Moscow oblast, 141701 Russia; Moscow, 119991 Russia

S. Brichkin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pevtsov.dn@phystech.edu
Chernogolovka, Moscow oblast, 142432 Russia

参考

  1. Deschler F., Price M., Pathak S., Klintberg L.E., Jarasch D.-D., Higler R., Hüttner S., Leijtens T., Stranks S.D., Snaith H.J., Atatüre M., Phillips R.T., Friend R.H. // J. Phys. Chem. Lett. 2014. V. 5. P. 1421.
  2. Чикалова–Лузина О.П., Вяткин В.М., Щербаков И.П., Алешин А.Н. // Физика твердого тела. 2020. Т. 62. Вып. 8. С. 1333–1338.
  3. Ahmad S., Kanaujia P.K., Beeson H.J., Abate A., Deschler F., Credgington D., Steiner U., Prakash G.V., Baumberg J.J. // ACS Appl Mater. Interfaces. 2015. № 7. P. 25227.
  4. Ye J., Byranvand M.M., Martínez C.O., Hoye R.L., Saliba M., Polavarapu L. // Angewandte Chemie. № 133(40). P. 21804–21828.
  5. Zhang C., Wang S., Li X., Yuan M., Turyanska L., Yang X. // Advanced Functional Materials. № 30(31). P. 1910582.
  6. Kim J., Hu L., Chen H., Guan X., Anandan P.R., Li F., Wu T. // ACS Materials Letters. № 2(11). P. 1368-1374.
  7. Zhou S., Zhou G., Li Y., Xu X., Hsu Y. J., Xu J., Lu X. // ACS Energy Letters. № 5(8). P. 2614-2623.
  8. Иванчихина А.В., Пундиков К.С. // Химия высоких энергий. Т. 54. № 5. С. 361–369.
  9. Gilmore R.H., Lee E.M., Weidman M.C., Willard A.P., Tisdale W.A. // Nano letters. № 17(2). P. 893–901.
  10. Chang Lu, Marcus W. Wright, Xiao Ma et al. // Chemistry of Materials. 2019. V. 31 № 1. P. 62–67.
  11. Jorick Maes, Lieve Balcaen, Emile Drijvers et al. // J. Phys. Chemi. Let. 2018. V. 9. № 11. P. 3093–3097.
  12. Tovstun S.A., Gadomska A.V., Spirin M.G., Razumov V.F. // J. Luminescence. 2022. V. 252. P. 119420.
  13. Mandal A., Ghosh A., Senanayak S.P., Friend R.H., Bhattacharyya S. // J. Phys. Chem. Let. 2021. V. 12(5).
  14. Aleshin A.N., Shcherbakov I.P., Kirilenko D.A. et al. // Phys. Solid State. 2019. V. 61. P. 256–262.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (81KB)
3.

下载 (257KB)
4.

下载 (80KB)
5.

下载 (100KB)
6.

下载 (44KB)

版权所有 © Д.Н. Певцов, Г.А. Лочин, А.В. Кацаба, С.Б. Бричкин, 2023

##common.cookie##