Effect of Cold Plasma Treatment on Surface Modification of Rice Grains
- Autores: Baldanov B.B.1, Ranzhurov T.V.1, Gomboeva S.V.2, Badmaeva I.I.2
-
Afiliações:
- Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
- East Siberian State University of Technology and Management
- Edição: Volume 57, Nº 4 (2023)
- Páginas: 332-335
- Seção: PLASMA CHEMISTRY
- URL: https://journals.rcsi.science/0023-1193/article/view/140023
- DOI: https://doi.org/10.31857/S0023119323040046
- EDN: https://elibrary.ru/QMRRMJ
- ID: 140023
Citar
Resumo
The influence of cold plasma of atmospheric-pressure glow discharge on the surface properties of rice grains has been studied. It has been established that as a result of the impact of nonthermal atmosphericpressure glow-discharge plasma on the seed surface, the surface becomes hydrophilic and is characterized by a decrease in the contact angle, an increase in surface energy, and enhancement of surface roughness, indicating the effective formation of polar groups on the surface of rice grains.
Palavras-chave
Sobre autores
B. Baldanov
Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
Email: baibat@mail.ru
Ulan-Ude, 670031 Russia
Ts. Ranzhurov
Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
Email: baibat@mail.ru
Ulan-Ude, 670031 Russia
S. Gomboeva
East Siberian State University of Technology and Management
Email: baibat@mail.ru
Ulan-Ude, 670013 Russia
I. Badmaeva
East Siberian State University of Technology and Management
Autor responsável pela correspondência
Email: baibat@mail.ru
Ulan-Ude, 670013 Russia
Bibliografia
- Pankaj S.K., Misra N.N., Cullen P.J. // Innovative Food Science and Emerging Technologies. 2013. V. 19. P. 153.
- Surowsky B., Fischer A., Schlueter O., Knorr D. // Innovative Food Science and Emerging Technologies. 2013. V. 19. P. 146.
- Misra N.N., Sullivan C., Panka S.K., Alvarez-Jube L., Cama R., Jacoby F., Cullen P.J. // Innovative Food Science and Emerging Technologies. 2014. V. 26. P. 456.
- Thirumdas R., Sarangapani C., Annapure U.S. // Food Biophysics. 2015. V. 10. P. 1.
- Cui L., Pan Z., Yue T., Atungulu G.G., Berrios J. // Cereal Chemistry. 2010. V. 87. P. 403.
- Sabularse V.C., Liuzzo J.A., Rao R.M., Grodner R.M. // Journal of Food Science. 1991. V. 56. P. 96.
- Sung W.C. // Radiation Physics and Chemistry. 2005. V. 73. P. 224.
- Chen H.H. // Food and Bioprocess Technology. 2014. V. 7. P. 2484.
- Chen H.H., Chen Y., Chang C.H. // Food Chemistry. 2012. V. 135. P. 74.
- Deshmukh R.R., Shetty A.R. // Journal of Applied Polymer Science. 2007b. V. 104. P. 449.
- Семенов А.П., Балданов Б.Б., Ранжуров Ц.В. // Приборы и техника эксперимента. 2020. № 2. С. 149.
- Stalder A.F., Melchior T., Müller M. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2010. V. 364. № 1. P. 72.
- Deshmukh R.R., Shetty A.R. // Journal of Applied Polymer Science. 2008. V. 107. P. 3707.
- Mirabedini S.M., Arabi H., Salem A., Asiaban S. // Progress in Organic Coating. 2007. 60. V. 105.
Arquivos suplementares
